天天看點

筆記(待續)-最優控制理論2

極小值原理

用變分法求解最優控制問題的必要條件之一為: ∂ H ∂ u \frac{\partial H}{\partial \boldsymbol{u}} ∂u∂H​。但在實際工程中,控制量一般是有界的,即:

∣ u i ( t ) ∣ ≤ M i , i = 1 , 2 , ⋯   , m u ( t ) ∈ Ω , Ω 為 有 界 閉 集 (1) \begin{array}{ll} |u_i (t)| \leq M_i & ,i = 1, 2, \cdots, m \\ \boldsymbol{u}(t) \in \boldsymbol{\Omega} & , \boldsymbol{\Omega}為有界閉集 \end{array} \tag{1} ∣ui​(t)∣≤Mi​u(t)∈Ω​,i=1,2,⋯,m,Ω為有界閉集​(1)

經典變分法不發處理控制量受限的情況,龐特裡亞金提出了極小值原理。

經典變分法最優控制的必要條件(終端時間固定,終端狀态受限制):

狀态方程: x ˙ = ∂ H ∂ λ = f [ x ( t ) , u ( t ) , t ] \dot{\boldsymbol{x}} = \frac{\partial{H}}{\partial{\boldsymbol{\lambda}}} = \boldsymbol{f} \left[ \boldsymbol{x}(t), \boldsymbol{u}(t), t \right] x˙=∂λ∂H​=f[x(t),u(t),t]

協态方程: λ ˙ = − ∂ H ∂ x \dot{\boldsymbol{\lambda}} = - \frac{\partial{H}}{\partial{\boldsymbol{x}}} λ˙=−∂x∂H​

橫截條件: λ ( t f ) = ∂ Θ ∂ x ( t f ) = ∂ ψ ∂ x ( t f ) + ∂ G T ∂ x ( t f ) v \boldsymbol{\lambda}(t_f) = \frac{\partial \boldsymbol{\Theta}}{\partial{\boldsymbol{x}(t_f)}} = \frac{\partial{\psi}}{\partial{\boldsymbol{x}(t_f)}} + \frac{\partial \boldsymbol{G}^T}{\partial{\boldsymbol{x}(t_f)}} \boldsymbol{v} λ(tf​)=∂x(tf​)∂Θ​=∂x(tf​)∂ψ​+∂x(tf​)∂GT​v

控制方程: ∂ H ∂ u = 0 \frac{\partial{H}}{\partial{\boldsymbol{u}}} = 0 ∂u∂H​=0

極小值原理最優控制的必要條件(終端時間固定,終端狀态受限制):

狀态方程: x ˙ = ∂ H ∂ λ = f [ x ( t ) , u ( t ) , t ] \dot{\boldsymbol{x}} = \frac{\partial{H}}{\partial{\boldsymbol{\lambda}}} = \boldsymbol{f} \left[ \boldsymbol{x}(t), \boldsymbol{u}(t), t \right] x˙=∂λ∂H​=f[x(t),u(t),t]

協态方程: λ ˙ = − ∂ H ∂ x \dot{\boldsymbol{\lambda}} = - \frac{\partial{H}}{\partial{\boldsymbol{x}}} λ˙=−∂x∂H​

橫截條件: λ ( t f ) = ∂ Θ ∂ x ( t f ) = ∂ ψ ∂ x ( t f ) + ∂ G T ∂ x ( t f ) v \boldsymbol{\lambda}(t_f) = \frac{\partial \boldsymbol{\Theta}}{\partial{\boldsymbol{x}(t_f)}} = \frac{\partial{\psi}}{\partial{\boldsymbol{x}(t_f)}} + \frac{\partial \boldsymbol{G}^T}{\partial{\boldsymbol{x}(t_f)}} \boldsymbol{v} λ(tf​)=∂x(tf​)∂Θ​=∂x(tf​)∂ψ​+∂x(tf​)∂GT​v

控制方程: (極小值條件) 在最優軌迹和最優控制上, H H H取極值: min ⁡ u ∈ Ω H ( x ∗ , λ ∗ , u , t ) = H ( x ∗ , λ ∗ , u ∗ , t ) \min_{u \in \boldsymbol{\Omega}} H (\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{u}, t) = H (\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{u}^*, t) minu∈Ω​H(x∗,λ∗,u,t)=H(x∗,λ∗,u∗,t)

最優控制的數值方法

以極小值原理求解終端時間固定,終端狀态自由的問題為例:

性能名額: J = ψ ( x ( t f ) , t f ) + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t J = \psi \left( \boldsymbol{x}(t_f), t_f \right) + \int_{t_0}^{t_f} {L \left[ \boldsymbol{x}(t), \boldsymbol{u}(t), t \right] {\rm{d}} t} J=ψ(x(tf​),tf​)+∫t0​tf​​L[x(t),u(t),t]dt

狀态方程: x ˙ = ∂ H ∂ λ = f [ x ( t ) , u ( t ) , t ] \dot{\boldsymbol{x}} = \frac{\partial{H}}{\partial{\boldsymbol{\lambda}}} = \boldsymbol{f} \left[ \boldsymbol{x}(t), \boldsymbol{u}(t), t \right] x˙=∂λ∂H​=f[x(t),u(t),t]

協态方程: λ ˙ = − ∂ H ∂ x \dot{\boldsymbol{\lambda}} = - \frac{\partial{H}}{\partial{\boldsymbol{x}}} λ˙=−∂x∂H​

初始條件: x ( t 0 ) = x 0 \boldsymbol{x}(t_0) = \boldsymbol{x}_0 x(t0​)=x0​

橫截條件: λ ( t f ) = ∂ ψ ∂ x ( t f ) \boldsymbol{\lambda}(t_f) = \frac{\partial{\psi}}{\partial{\boldsymbol{x}(t_f)}} λ(tf​)=∂x(tf​)∂ψ​

控制方程(最優性條件):

(1) (極小值條件, u \boldsymbol{u} u有限制) 在最優軌迹和最優控制上, H H H取極值: min ⁡ u ∈ Ω H ( x ∗ , λ ∗ , u , t ) = H ( x ∗ , λ ∗ , u ∗ , t ) \min_{u \in \boldsymbol{\Omega}} H (\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{u}, t) = H (\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{u}^*, t) minu∈Ω​H(x∗,λ∗,u,t)=H(x∗,λ∗,u∗,t)

(2) ( u \boldsymbol{u} u無限制) ∂ H ∂ u = 0 \frac{\partial H}{\partial \boldsymbol{u}} = 0 ∂u∂H​=0

間接法:猜測協态初值 λ ( t 0 ) \boldsymbol{\lambda}(t_0) λ(t0​),解兩點邊值問題。

直接法:離散狀态、控制變量作為設計變量,數值積分性能名額作為目标函數,将最優控制問題轉換為非線性規劃問題,直接優化求解 u ( t ) \boldsymbol{u}(t) u(t),不用協态方程。

繼續閱讀