天天看點

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

作者:電子工程世界

本文介紹可供5G網絡使用的各種回程技術,重點讨論E頻段無線射頻鍊路及其如何支援全球5G網絡的持續部署。我們将對E頻段技術必需的系統要求進行技術分析。然後,我們将結果映射到實體無線電設計中,同時深入了解毫米波(mmW)信号鍊。

5G網絡拓撲

随着4G長期演進(LTE)技術的成功推進,全球開始大規模部署5G網絡。圖1展示了5G網絡的拓撲結構,以幫助我們清晰地了解從接入到回程的無線電網絡。該拓撲結構描繪了四種場景,每種場景都通過單獨的連接配接回到核心網絡。

手機和5G無線網際網路等使用者裝置(UE)将通過連接配接到下一代無線接入網絡(NG-RAN)中的基站(gNodeB)來通路網絡。在圖1中,我們将gNodeB表示為宏蜂窩、小蜂窩、5G mmW接入點和中繼器。宏蜂窩和小型蜂窩覆寫410 MHz至7.125 GHz (FR1)的頻率範圍(FR)。5G mmW解決方案覆寫24.25 GHz至52.6 GHz (FR2)的頻率範圍。宏蜂窩的覆寫半徑較大,而小蜂窩在數量上比宏蜂窩多,更容易部署,但覆寫半徑較小。小蜂窩用于處理使用者密集區域的流量,以及在不增加宏蜂窩的情況下,更高效地擴大網絡容量或覆寫範圍。5G mmW是最新一代技術,能夠滿足更高網絡容量需求,支援新的使用者體驗,例如在體育賽事直播中,球迷可以在移動裝置上觀看回放。NG-RAN裝置還有一些執行個體,可以在FR1和FR2頻段工作,例如大規模MIMO無線電、微蜂窩、毫微微蜂窩、微微蜂窩等。

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

圖1.5G網絡拓撲,包括回程

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

圖2.RAN的演變

回程(也稱回傳)或移動回程是指連接配接核心網絡(CN)和無線接入網絡(5G中的gNodeB)的傳輸網絡。随着蜂窩站點密度的增加,由于需要高容量鍊路來連接配接核心網絡,是以移動和固定無線回程顯得愈加重要。《2022年愛立信微波展望》報告顯示,到2025年,城市蜂窩站點将需要每站點5 Gbps至20 Gbps的回程容量。在圖1中,我們将無線回程顯示為微波(μW)和E頻段(mmW)無線電兩種。E頻段無線電可以與μW無線電共置,或者作為更高資料帶寬方案替代μW無線電。雖然5G帶來了新的商機,但移動營運商由于需要在城市或農村地區快速提供(上市時間)高容量、低延遲、可靠、可擴充、成本優化的回程鍊路,而承受着越來越大的壓力。

回傳、中傳和前傳有何差別?

在5G RAN中,基帶單元(BBU)功能分為分布式單元(DU)和集中式單元(CU)。營運商選擇如何放置這些裝置,取決于可用的前傳接口和鍊路傳輸技術,與采用更集中的處理方式相比,在邊緣以低延遲完成多少處理量比較合适。圖2展示了無線接入網絡的架構演進。回傳是每種解決方案的核心部分。

u 蜂窩站點RAN:傳統配置,射頻單元(RU)和BBU功能位于蜂窩站點。單獨的回傳鍊路連接配接到核心網絡。

u 集中式RAN(低級拆分):此模式允許将部分網絡集中到邊緣站點,這樣做可以提供虛拟化優勢(vBBU)。處理能力将下放到邊緣站點,蜂窩站點中隻有實體層,是以會降低其複雜性。然而,現在需要前傳鍊路在RU和集中式BBU之間傳輸大量資料。這有時稱之為低級拆分。

u 分離式RAN(進階拆分):RU和DU可以共置于蜂窩站點,也可以分開放置。此模式不僅提供虛拟化優勢(vBBU),還能提升成本效益。CN單獨位于邊緣站點。這稱為進階拆分:

u RU和DU共置于蜂窩站點,而CN位于邊緣站點。這意味着需要中傳鍊路将遠端CN(邊緣站點)連接配接到RU + DU(蜂窩站點)。

u RU、DU和CN分開放置。

集中式和分離式RAN模型都支援多家供應商的硬體和軟體實施方案,這應當能為網絡部署帶來成本效益。裝置必須支援互操作(RU、DU、CU),允許将不同供應商的解決方案混搭使用,進而提高效率。這是開放式RAN (O-RAN)聯盟的核心精神。以前,裝置提供商的接口解決方案是專有的,無法與其他供應商的裝置實作互操作。

此外,随着營運商在集中式和分離式RAN配置中部署前傳和中傳鍊路,這些鍊路也在不斷發展。如果沒有光纖可用和/或安裝光纖的成本過高,或者光纖并非短期内完成部署的可行方案,那麼可以通過E頻段提供出色的解決方案。

值得注意的是,4G和5G之間有一個根本差別:在5G NR中,傳統的EPC(演進分組核心網)在專用硬體上運作,通常位于基站或蜂窩塔附近,造成被拆分。這樣各項功能可以在商用成品(COTS)硬體上運作。是以,随着功能轉移到邊緣,5G的核心網絡實際上更加分散。參見圖3。核心網絡功能現在可以共置于邊緣,使得通信速度更快,使用者延遲更低。它還支援網絡切片,即為特定應用需求建立虛拟網絡。例如,一個切片可以提供高速寬帶,而另一個切片可以為物聯網提供機器對機器連接配接。此外,這種邊緣雲架構支援邊緣計算。是以,網絡可以在靠近邊緣的地方設定小型資料中心,以支援相同内容的視訊流傳輸,而不是費勁地從一個中心位置回傳資料。一般而言,這種5G架構在配置網絡接入、硬體、功能和回程方面更高效、更靈活。

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

圖3.5G網絡切片

目前有哪些回程解決方案可用?

光纖回程是移動網絡營運商(MNO)可以使用的最高容量方案。它是目前使用的主流小蜂窩回程技術,因為許多人口稠密的城市/室内區域都有光纖可用,而且這些區域都使用小蜂窩來增加覆寫範圍/容量。光纖的容量高達1.6 Tbps(160個信号 × 每個信号10 Gbps)。光纖是MNO的最高容量選擇。然而,光纖部署存在成本高、采購難、規劃審批複雜和耗時長等問題。根據GMSA的資料,部署光纖的成本約為7萬美元/千米。資本支出和部署時間始終是阻礙持續增長的因素。需要注意的是,μW/mmW回程和光纖是互為補充的解決方案,它們在網絡中共存。無線和光纖為營運商提供了替代回程技術。理想的回程解決方案需要考慮許多因素,包括部署時間、聯邦/州和城市的許可、獲得通行權、資料帶寬要求、地形和總擁有成本。

μW和mmW回程是目前宏蜂窩的主流回程技術,約占宏蜂窩回程鍊路的50%。

μW許可頻段技術功能強大、易于部署且成本相對較低(無需破壞城市街道或開挖溝槽)。它覆寫6 GHz至42 GHz的頻率,這些頻段非常适合中長距離鍊路,覆寫範圍可達25千米。

在V頻段(57 GHz至66 GHz)和E頻段(76 GHz/86 GHz)内使用mmW回程技術已持續多年。然而,V頻段會遭受嚴重的氧吸收,在60 GHz處會發生很大的信号衰減。此外,各國對該頻段的使用有不同的規定。有些國家将部分頻譜許可用于回程,而有些國家則将其留給免許可使用。歐洲和美國是允許免許可使用的地區,并且正在制定規則以減少不同配置的幹擾機率。但是,V頻段在提供高品質回程方面仍然不可靠。其用途預計主要是免許可的短距離室内和室外覆寫解決方案(WiGig)。E頻段提供帶寬更寬、信号衰減更低的解決方案,進而可實作高可用性鍊路。

那麼,為何過去沒有在網絡中大量使用E頻段呢?在4G網絡中,考慮到可用帶寬容量,mmW回程技術并未得到充分利用,隻有某些場景才會用到,是以大多數無線回程是使用許可的μW頻段(6 GHz至42 GHz)實作的。随着5G網絡的爆炸式部署和密集化,情況發生了變化,現在需要10 Gbps或更高的回程能力。

那麼,使用E頻段有哪些核心優勢,它與光纖和μW相比如何?E頻段提供兩個5 GHz頻譜頻段:71 GHz至76 GHz和81 GHz至86 GHz。這些頻段被細分為多個250 MHz信道。頻譜配置設定的一個主要優點是它可以用于時分雙工或頻分雙工鍊路。容量也不是問題,因為在許可的E頻段點對點鍊路中,可以傳輸的最大資料量大于60 Gbps1。E頻段還有望用于點對多點系統,這将進一步提高可用的回程資料帶寬。與傳統的μW無線電相比,信道容量顯著增加。由于頻率可用性問題,傳統μW無線電鍊路的容量隻有大約2.4 Gbps。此外,E頻段天線将電磁能集中在一個非常窄的能量束中(例如,隻有1度的發散角),是以可以建構高增益(45 dBi)、小外形尺寸(30厘米天線直徑)的無線電裝置,非常适合隐蔽安置在建築物或塔上。即使RF發射功率不高,E頻段通常也能支援長達3千米的鍊路長度2。表1比較了常用的幾種回程技術。

表1.回程技術比較

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

銅纜是使用T1/E1協定的傳統技術。銅纜無法輕松擴充以提供4G所需的帶寬,更不用說5G了。對于室内小蜂窩和公共場所來說,它仍然是一種選擇,但營運商已開始放棄這項技術。與光纖或μW/mmW相比,衛星的使用并不廣泛,原因在于資料速率有限,而且由于地球靜止衛星處于非常高的地球軌道,延遲是個問題。低地球軌道(LEO)衛星改善了延遲,可能會發揮越來越大的作用,但具體情況仍不确定。衛星的主要優勢是将沒有替代方案可用的農村地區連接配接起來。除極少數新興市場外,Wi-Fi并不是一種廣泛使用的回程技術。這些頻段是免許可的,是以不斷增多的無線接入點會造成幹擾,而且覆寫範圍有限也是個問題。

無線E頻段鍊路如何無線傳輸資料?

E頻段使用傳統的數字調制編碼,例如從BSPK到1024 QAM。但是,限制連結距離的因素有哪些?

u 惡劣天氣:雨、霧、雨夾雪和雪會使信号強度以不可預測的方式衰減,導緻接收器收到的信号水準下降,進而降低信噪比(SNR)。值得注意的是,當遇到雨衰時,E頻段無線電鍊路可以使用自适應調制。這意味着,鍊路可以轉而使用不太複雜的調制,以防止資料丢失。通過降低這段時間内的容量,高可用性資料鍊路的連接配接得以維持。在降雨量高達100毫米/小時的情況下,ADI公司的系統化封裝(SiP)解決方案可確定1千米鍊路具有99.999%的可用性。

u 基帶能力:在E頻段頻率工作時,基帶單元成為資料吞吐量的瓶頸。典型BBU支援10 Gbps的資料吞吐量,而可用頻譜可支援超過60 Gbps的資料吞吐量。ADI E頻段SiP将支援高達1024 QAM的調制階數。

u LO的相位噪聲:相位噪聲會限制調制階數。LO抖動會導緻信噪比(SNR)降低,因為噪聲會疊加到要上變頻/下變頻的目标信号上。ADI公司提供出色的寬帶外部鎖相環/壓控振蕩器(PLL/VCO)源,以及E頻段片内LO路徑倍頻器和放大器。

表2顯示了E頻段技術支援的多種調制的預期比特效率和SNR要求。

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

圖4.E頻段無線電單元系統圖(藍色 = ADI解決方案)

表2.E頻段技術支援的數字調制編碼與SNR

E頻段無線射頻鍊路為5G網絡提供高容量回程解決方案

E頻段無線電是否比μW無線電更難設計?

令人驚訝的是,E頻段無線電可以利用目前μW無線電基帶卡設計的很大一部分,包括數據機核心、處理器、存儲器子產品、時鐘恢複/生成、同步1588電路和較低頻率模拟前端。這使得μW無線電供應商可以更輕松地過渡到E頻段領域。請參見圖4。E頻段前端子產品、雙工器和天線是将µW無線電轉換為E頻段無線電所需的新設計子產品。

毫無疑問,76 GHz/86 GHz設計似乎令人生畏,因為與較低頻率的RF甚至μW相比,mmW設計更複雜。如圖4所示,波導轉換現已內建為ADI E頻段SiP的一部分,以盡可能降低天線的射頻(RF)損耗,轉換至更高頻率的信号。ADI SiP消除了晶片、鍵合和環氧樹脂裝配。ADI SiP可以使用标準貼片裝配裝置進行裝配。E頻段SiP使無線電裝配類似于μW無線電裝配。

由于1 km4處的自由空間損耗為131 dB,雨衰為17 dB/km和31 dB/km(分别針對99.99%和99.999%的可用性),是以E頻段鍊路預算可能很有挑戰性5。設計人員必須仔細考慮增益、發射功率、噪聲系數和IP3等要求,以滿足5G網絡營運商的回程要求。

ADI公司在μW和mmW回程技術方面有着深厚的積累。我們開發了E頻段器件來化解上述許多設計和裝配挑戰,幫助更多設計人員輕松開發E頻段産品。

E頻段——滿足5G回程需求的下一個重要選項

本文重點說明了E頻段能夠為5G網絡提供更高的帶寬,進而擴充了回程選項。它是光纖的出色補充技術,為營運商規劃部署和平衡集中式與分離式RAN解決方案提供了更大的靈活性。

ADI公司開發了具有基帶輸入或輸出以及內建波導輸出或輸入的表面貼裝、高內建度SiP,進而消除了與E頻段前端設計相關的大部分繁重工作。設計人員不再需要擔心晶片處理,而是可以利用ADI公司的E頻段封裝技術解決方案。ADI公司緻力于為更多RF/μW和mmW設計人員提供更易于使用的技術,以推動這一市場的發展。第二部分将深入探讨E頻段鍊路預算以及ADI E頻段SiP系列産品的技術細節。

作者

Andy Boyce是ADI公司的系統架構師,負責開發信号鍊和系統解決方案。他為有線、無線和防務系統設計射頻和微波産品已有30多年。Andy擁有馬薩諸塞大學洛厄爾分校電氣工程學士學位和本特利大學金融學碩士學位。

Donal McCarthy是ADI公司微波通信部(愛爾蘭科克)市場營銷與業務發展總監。他擁有科克大學的工商管理學士學位、波士頓學院的工商管理碩士學位和都柏林愛爾蘭管理學院的市場營銷學位。Donal擔任過多個職位,包括MACOM設計工程師、Hittite現場銷售工程師和營銷職位以及ADI公司營銷經理和總監職位。

繼續閱讀