天天看點

通過STM32Cube配置PWM+DMA

最近項目需要使用到動态調節方波占空比,通過網上查閱資料,結合晶片手冊,發現STM32G071的TIM1中的PWM可以通過DMA來實作動态修改。

原理就是通過DMA将使用者定義的脈沖占空比數組發送到TIM1_CCRn寄存器,數組的大小決定了脈沖的數量,數組的值決定了每個脈沖的占空比。

話不多說,先上Cube進行最基本的配置(時鐘,定時器,DMA):

通過STM32Cube配置PWM+DMA
通過STM32Cube配置PWM+DMA
通過STM32Cube配置PWM+DMA
通過STM32Cube配置PWM+DMA

主函數

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "tim.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define NUM 100
uint16_t send_Buf[NUM]={0};    /* 建立一個數組用于測試 */
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  for(int i=0;i<NUM;i++)
	{
		send_Buf[i]=100*(i%5);    /* 設定不同的占空比 */
	}
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM1_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		HAL_Delay(200);
		HAL_TIM_PWM_Start_DMA(&htim1, TIM_CHANNEL_2,(uint32_t*)send_Buf,NUM);/* 開啟TIM1通道2的DMA傳輸 */
		HAL_TIM_PWM_Start_DMA(&htim1, TIM_CHANNEL_3,(uint32_t*)send_Buf,NUM);/* 開啟TIM1通道3的DMA傳輸 */
  }
  /* USER CODE END 3 */
}
/* 傳輸完一幀資料以後暫停DMA */
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Channel==HAL_TIM_ACTIVE_CHANNEL_2)
	{
		HAL_TIM_PWM_Stop_DMA(htim, TIM_CHANNEL_2); 
	}else if(htim->Channel==HAL_TIM_ACTIVE_CHANNEL_3)
	{
		HAL_TIM_PWM_Stop_DMA(htim, TIM_CHANNEL_3);
	}
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 8;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_TIM1;
  PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLKSOURCE_PCLK1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

           

定時器配置

/**
  ******************************************************************************
  * @file    tim.c
  * @brief   This file provides code for the configuration
  *          of the TIM instances.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "tim.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

TIM_HandleTypeDef htim1;
DMA_HandleTypeDef hdma_tim1_ch2;
DMA_HandleTypeDef hdma_tim1_ch3;

/* TIM1 init function */
void MX_TIM1_Init(void)
{
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 63;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 1000;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM2;/*		PWM2模式下
                                	a)如果設定TIM_OCPolarity_High:
									TIMx_CNT<TIMx_CCR輸出為低電平
									TIMx_CNT>TIMx_CCR輸出為高電平
									b)如果設定TIM_OCPolarity_Low:
									TIMx_CNT<TIMx_CCR輸出為高電平
									TIMx_CNT>TIMx_CCR輸出為低電平*/
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;/*		PWM1模式下
                                	a)如果設定TIM_OCPolarity_High:
									TIMx_CNT<TIMx_CCR輸出為高電平
									TIMx_CNT>TIMx_CCR輸出為低電平
									b)如果設定TIM_OCPolarity_Low:
									TIMx_CNT<TIMx_CCR輸出為低電平
									TIMx_CNT>TIMx_CCR輸出為高電平*/
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_SET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
  sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
  sBreakDeadTimeConfig.Break2Filter = 0;
  sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  HAL_TIM_MspPostInit(&htim1);

}

void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{

  if(tim_baseHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspInit 0 */

  /* USER CODE END TIM1_MspInit 0 */
    /* TIM1 clock enable */
    __HAL_RCC_TIM1_CLK_ENABLE();

    /* TIM1 DMA Init */
    /* TIM1_CH2 Init */
    hdma_tim1_ch2.Instance = DMA1_Channel1;
    hdma_tim1_ch2.Init.Request = DMA_REQUEST_TIM1_CH2;
    hdma_tim1_ch2.Init.Direction = DMA_MEMORY_TO_PERIPH;
    hdma_tim1_ch2.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_tim1_ch2.Init.MemInc = DMA_MINC_ENABLE;
    hdma_tim1_ch2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_tim1_ch2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_tim1_ch2.Init.Mode = DMA_NORMAL;
    hdma_tim1_ch2.Init.Priority = DMA_PRIORITY_MEDIUM;
    if (HAL_DMA_Init(&hdma_tim1_ch2) != HAL_OK)
    {
      Error_Handler();
    }

    __HAL_LINKDMA(tim_baseHandle,hdma[TIM_DMA_ID_CC2],hdma_tim1_ch2);

    /* TIM1_CH3 Init */
    hdma_tim1_ch3.Instance = DMA1_Channel2;
    hdma_tim1_ch3.Init.Request = DMA_REQUEST_TIM1_CH3;
    hdma_tim1_ch3.Init.Direction = DMA_MEMORY_TO_PERIPH;
    hdma_tim1_ch3.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_tim1_ch3.Init.MemInc = DMA_MINC_ENABLE;
    hdma_tim1_ch3.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    hdma_tim1_ch3.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    hdma_tim1_ch3.Init.Mode = DMA_NORMAL;
    hdma_tim1_ch3.Init.Priority = DMA_PRIORITY_MEDIUM;
    if (HAL_DMA_Init(&hdma_tim1_ch3) != HAL_OK)
    {
      Error_Handler();
    }

    __HAL_LINKDMA(tim_baseHandle,hdma[TIM_DMA_ID_CC3],hdma_tim1_ch3);

  /* USER CODE BEGIN TIM1_MspInit 1 */

  /* USER CODE END TIM1_MspInit 1 */
  }
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(timHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspPostInit 0 */

  /* USER CODE END TIM1_MspPostInit 0 */

    __HAL_RCC_GPIOB_CLK_ENABLE();
    /**TIM1 GPIO Configuration
    PB3     ------> TIM1_CH2
    PB6     ------> TIM1_CH3
    */
    GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* USER CODE BEGIN TIM1_MspPostInit 1 */

  /* USER CODE END TIM1_MspPostInit 1 */
  }

}

void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{

  if(tim_baseHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspDeInit 0 */

  /* USER CODE END TIM1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_TIM1_CLK_DISABLE();

    /* TIM1 DMA DeInit */
    HAL_DMA_DeInit(tim_baseHandle->hdma[TIM_DMA_ID_CC2]);
    HAL_DMA_DeInit(tim_baseHandle->hdma[TIM_DMA_ID_CC3]);
  /* USER CODE BEGIN TIM1_MspDeInit 1 */

  /* USER CODE END TIM1_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

           

通過示波器檢視波形:

通過STM32Cube配置PWM+DMA

繼續閱讀