http://www.elijahqi.win/2018/03/03/codeforces-446c/
題意翻譯
題面大意:給出一個數列,每次可以選取一個區間,按順序加上第i個Fibonacci Numbers(斐波那契數)進行更新,也可以查詢某一個區間的總和。
感謝@char32_t 提供的翻譯
題目描述
In mathematical terms, the sequence
Fn F_{n}
F
n
of Fibonacci numbers is defined by the recurrence relation
F1=1;F2=1;Fn=Fn−1+Fn−2(n>2).
F
1
=
1
;
F
2
=
1
;
F
n
=
F
n
−
1
+
F
n
−
2
(
n
>
2
)
.
DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of
n n
n integers:
a1,a2,…,an a_{1},a_{2},…,a_{n}
a
1
,a
2
,…,a
n
. Moreover, there are
m m
m queries, each query has one of the two types:
Format of the query ”
1 l r 1\ l\ r
1 l r “. In reply to the query, you need to add
Fi−l+1 F_{i-l+1}
F
i−l+1
to each element
ai a_{i}
a
i
, where
l<=i<=r l<=i<=r
l<=i<=r .
Format of the query ”
2 l r 2\ l\ r
2 l r “. In reply to the query you should output the value of modulo 1000000009(109+9)
1000000009
(
10
9
+
9
)
.
Help DZY reply to all the queries.
輸入輸出格式
輸入格式:
The first line of the input contains two integers
n n
n and
m m
m (
1<=n,m<=300000 1<=n,m<=300000
1<=n,m<=300000 ). The second line contains
n n
n integers a1,a2,...,an(1<=ai<=109)
a
1
,
a
2
,
.
.
.
,
a
n
(
1
<=
a
i
<=
10
9
)
— initial array
a a
a .
Then,
m m
m lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality
1<=l<=r<=n 1<=l<=r<=n
1<=l<=r<=n holds.
輸出格式:
#include<cstdio>
#include<algorithm>
#define mod 1000000009
#define N 330000
#define ll long long
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
struct node{
int sum,fa,fb;int left,right;
}tree[N<<1];
int n,m,a[N],f[N],num,root;
inline int calc_kth(int a,int b,int k){
if (k==1) return a;if (k==2) return b;
return ((ll)a*f[k-2]+(ll)b*f[k-1])%mod;
}
inline void update(int x){
int l=tree[x].left,r=tree[x].right;
tree[x].sum=(tree[l].sum+tree[r].sum)%mod;
}
inline void build(int &x,int l,int r){
x=++num;int mid=l+r>>1;if (l==r) {tree[x].sum=a[l];return;}
build(tree[x].left,l,mid);build(tree[x].right,mid+1,r);update(x);
}
inline int getsum(int a,int b,int k){
if (k==1) return a;if(k==2) return (a+b)%mod;
return (calc_kth(a,b,k+2)-b+mod)%mod;
}
inline void pushdown(int x,int l,int r){
if (!tree[x].fa) return;int mid=l+r>>1;
int lc=tree[x].left,rc=tree[x].right,a,b;
(tree[lc].fa+=tree[x].fa)%=mod;(tree[lc].fb+=tree[x].fb)%=mod;
(tree[lc].sum+=getsum(tree[x].fa,tree[x].fb,mid-l+1))%=mod;
a=calc_kth(tree[x].fa,tree[x].fb,mid-l+2);
b=calc_kth(tree[x].fa,tree[x].fb,mid-l+3);
(tree[rc].fa+=(a))%=mod;
(tree[rc].fb+=(b))%=mod;
(tree[rc].sum+=getsum(a,b,r-mid))%=mod;
tree[x].fa=tree[x].fb=0;
}
inline void change(int x,int len,int a,int b){
(tree[x].fa+=a)%=mod;(tree[x].fb+=b)%=mod;
(tree[x].sum+=getsum(a,b,len))%=mod;
}
inline void insert1(int x,int l,int r,int l1,int r1){
if (l1<=l&&r1>=r){change(x,r-l+1,f[l-l1+1],f[l-l1+2]);return;}
int mid=l+r>>1;pushdown(x,l,r);
if(l1<=mid) insert1(tree[x].left,l,mid,l1,r1);
if (r1>mid) insert1(tree[x].right,mid+1,r,l1,r1);update(x);
}
inline int query(int x,int l,int r,int l1,int r1){
if (l1<=l&&r1>=r) return tree[x].sum;int mid=l+r>>1;ll tmp=0;pushdown(x,l,r);
if (l1<=mid) tmp+=query(tree[x].left,l,mid,l1,r1);
if (r1>mid) tmp+=query(tree[x].right,mid+1,r,l1,r1);return tmp%mod;
}
inline void print(int x,int l,int r){
pushdown(x,l,r);int mid=l+r>>1;
if(tree[x].left) print(tree[x].left,l,mid);
printf("%d %d %d\n",l,r,tree[x].sum);
if (tree[x].right) print(tree[x].right,mid+1,r);
}
int main(){
freopen("cf446c.in","r",stdin);
n=read();m=read();for (int i=1;i<=n;++i) a[i]=read();
f[1]=f[2]=1;for (int i=3;i<=n+2;++i) f[i]=(f[i-1]+f[i-2])%mod;build(root,1,n);
//for (int i=1;i<=n;++i) printf("%d,f[i]);puts("" );
while(m--){
int op=read(),l=read(),r=read();
if(op==1) insert1(root,1,n,l,r);
if(op==2) {
// if (query(root,1,n,l,r)==74) printf("%d %d\n",l,r);
printf("%d\n",query(root,1,n,l,r));
}//print(root,1,n);puts("----------");
}
return 0;
}
/*
488
563
105
69
71
256
210
175
373
217
*/