文章目錄
-
- 1. 什麼是Unet模型
- 2. Unet模型的代碼實作
-
- 2.1、主幹模型Mobilenet
- 2.2、Unet的Decoder解碼部分
- 3. 代碼測試
- 4. 訓練檔案詳解
- 5. LOSS函數的組成
- 6. 訓練代碼
-
- 6.1、檔案存放方式
- 6.2、訓練檔案
- 6.3、預測檔案
- 7. 訓練結果
Unet
是一個語義分割模型,其主要執行過程與其它語義分割模型類似,首先利用卷積進行下采樣,然後提取出一層又一層的特征,利用這一層又一層的特征,其再進行上采樣,最後得出一個每個像素點對應其種類的圖像。
看如下這幅圖我們大概可以看出個是以然來:
在進行
Segnet
的詳解的時候我們知道,其隻選了一個h*w壓縮了四次的特征層進行三次上采樣得到最後的結果。
但是
Unet
不一樣,其利用到了壓縮了二、三、四次的特征層,最後輸出圖像分割的結果(可以選擇是否需要壓縮了一次的特征層)。

具體的網絡結構如下,左邊的順序從上向下傳播,右邊的順序從下向上傳播:
其主要的過程就是,将h*w被壓縮了四次的f4進行一次上采樣後與f3進行concatenate,然後再進行一次上采樣與f2進行concatenate,然後再進行一次上采樣(這裡可以選擇是否與f1進行concatenate),最後利用卷積輸出filter為nclasses的圖像。(一共進行三次上采樣)
Unet
模型的代碼分為兩部分。
該部分用于特征提取,實際上就是正常的
mobilenet
結構。
from keras.models import *
from keras.layers import *
import keras.backend as K
import keras
IMAGE_ORDERING = 'channels_last'
def relu6(x):
return K.relu(x, max_value=6)
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
filters = int(filters * alpha)
x = ZeroPadding2D(padding=(1, 1), name='conv1_pad', data_format=IMAGE_ORDERING )(inputs)
x = Conv2D(filters, kernel , data_format=IMAGE_ORDERING ,
padding='valid',
use_bias=False,
strides=strides,
name='conv1')(x)
x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
return Activation(relu6, name='conv1_relu')(x)
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
depth_multiplier=1, strides=(1, 1), block_id=1):
channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
x = ZeroPadding2D((1, 1) , data_format=IMAGE_ORDERING , name='conv_pad_%d' % block_id)(inputs)
x = DepthwiseConv2D((3, 3) , data_format=IMAGE_ORDERING ,
padding='valid',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False,
name='conv_dw_%d' % block_id)(x)
x = BatchNormalization(
axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)
x = Conv2D(pointwise_conv_filters, (1, 1), data_format=IMAGE_ORDERING ,
padding='same',
use_bias=False,
strides=(1, 1),
name='conv_pw_%d' % block_id)(x)
x = BatchNormalization(axis=channel_axis,
name='conv_pw_%d_bn' % block_id)(x)
return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)
def get_mobilenet_encoder( input_height=224 , input_width=224 , pretrained='imagenet' ):
alpha=1.0
depth_multiplier=1
dropout=1e-3
img_input = Input(shape=(input_height,input_width , 3 ))
x = _conv_block(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
f1 = x
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
f2 = x
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
f3 = x
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
f4 = x
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
strides=(2, 2), block_id=12)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
f5 = x
return img_input , [f1 , f2 , f3 , f4 , f5 ]
這一部分對應着上面
Unet
模型中的解碼部分。
其關鍵就是把獲得的特征重新映射到比較大的圖中的每一個像素點,用于每一個像素點的分類。
from keras.models import *
from keras.layers import *
from nets.mobilenet import get_mobilenet_encoder
IMAGE_ORDERING = 'channels_last'
MERGE_AXIS = -1
def _unet( n_classes , encoder , l1_skip_conn=True, input_height=416, input_width=608 ):
img_input , levels = encoder( input_height=input_height , input_width=input_width )
[f1 , f2 , f3 , f4 , f5 ] = levels
o = f4
# 26,26,512
o = ( ZeroPadding2D( (1,1) , data_format=IMAGE_ORDERING ))(o)
o = ( Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = ( BatchNormalization())(o)
# 52,52,512
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
# 52,52,768
o = ( concatenate([ o ,f3],axis=MERGE_AXIS ) )
o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o)
# 52,52,256
o = ( Conv2D( 256, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = ( BatchNormalization())(o)
# 104,104,256
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
# 104,104,384
o = ( concatenate([o,f2],axis=MERGE_AXIS ) )
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
# 104,104,128
o = ( Conv2D( 128 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING ) )(o)
o = ( BatchNormalization())(o)
# 208,208,128
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
if l1_skip_conn:
o = ( concatenate([o,f1],axis=MERGE_AXIS ) )
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
o = ( Conv2D( 64 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING ))(o)
o = ( BatchNormalization())(o)
o = Conv2D( n_classes , (3, 3) , padding='same', data_format=IMAGE_ORDERING )( o )
# 将結果進行reshape
o = Reshape((int(input_height/2)*int(input_width/2), -1))(o)
o = Softmax()(o)
model = Model(img_input,o)
return model
def mobilenet_unet( n_classes , input_height=224, input_width=224 , encoder_level=3):
model = _unet( n_classes , get_mobilenet_encoder , input_height=input_height, input_width=input_width )
model.model_name = "mobilenet_unet"
return model
将上面兩個代碼分别儲存為
mobilenet.py
和
unet.py
。按照如下方式存儲:
此時我們運作
test.py
的代碼:
from nets.unet import mobilenet_unet
model = mobilenet_unet(2,416,416)
model.summary()
如果沒有出錯的話就會得到如下的結果:
其模型比
Segnet
稍微大一點。 到這裡就完成了基于
Mobile
模型的
Unet
的搭建。
這個要從訓練檔案講起。語義分割模型訓練的檔案分為兩部分。
第一部分是原圖,像這樣:
第二部分标簽,像這樣:
當你們看到這個标簽的時候你們會說,我靠,你給我看的什麼辣雞,全黑的算什麼标簽,其實并不是這樣的,這個标簽看起來全黑,但是實際上在斑馬線的部分其RGB三個通道的值都是1。
其實給你們換一個圖你們就可以更明顯的看到了。
這是
voc
資料集中語義分割的訓練集中的一幅圖:
這是它的标簽。
為什麼這裡的标簽看起來就清楚的多呢,因為在voc中,其一共需要分21類,是以火車的RGB的值可能都大于10了,當然看得見。
是以,在訓練集中,如果像本文一樣分兩類,那麼背景的RGB就是000,斑馬線的RGB就是111,如果分多類,那麼還會存在222,333,444這樣的。這說明其屬于不同的類。
關于
loss
函數的組成我們需要看兩個
loss
函數的組成部分,第一個是預測結果。
# 此時輸出為h_input/2,w_input/2,nclasses
o = Conv2D( n_classes , (3, 3) , padding='same', data_format=IMAGE_ORDERING )( o )
# 将結果進行reshape
o = Reshape((int(input_height/2)*int(input_width/2), -1))(o)
o = Softmax()(o)
model = Model(img_input,o)
其首先利用filter為n_classes的卷積核進行卷積,此時輸出為h_input/2,w_input/2,nclasses,對應着每一個h*w像素點上的種類。之後利用Softmax估計屬于每一個種類的機率。
其最後預測
y_pre
其實就是每一個像素點屬于哪一個種類的機率。
第二個是真實值,真實值是這樣處理的。
# 從檔案中讀取圖像
img = Image.open(r".\dataset2\png" + '/' + name)
img = img.resize((int(WIDTH/2),int(HEIGHT/2)))
img = np.array(img)
seg_labels = np.zeros((int(HEIGHT/2),int(WIDTH/2),NCLASSES))
for c in range(NCLASSES):
seg_labels[: , : , c ] = (img[:,:,0] == c ).astype(int)
seg_labels = np.reshape(seg_labels, (-1,NCLASSES))
Y_train.append(seg_labels)
其将
png
圖先進行
resize
,
resize
後其大小與預測
y_pre
的
h*w
相同,然後讀取每一個像素點屬于什麼種類,并存入。
其最後真實
y_true
其實就是每一個像素點确實屬于哪個種類。
最後
loss
函數的組成就是
y_true
y_pre
的交叉熵。
大家可以在我的
github
上下載下傳完整的代碼。
https://github.com/bubbliiiing/Semantic-Segmentation
資料集的連結為:
連結:https://pan.baidu.com/s/1uzwqLaCXcWe06xEXk1ROWw
提取碼:pp6w
如圖所示:
其中
img
img_out
是測試檔案。
訓練檔案如下:
from nets.unet import mobilenet_unet
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from PIL import Image
import keras
from keras import backend as K
import numpy as np
NCLASSES = 2
HEIGHT = 416
WIDTH = 416
def generate_arrays_from_file(lines,batch_size):
# 擷取總長度
n = len(lines)
i = 0
while 1:
X_train = []
Y_train = []
# 擷取一個batch_size大小的資料
for _ in range(batch_size):
if i==0:
np.random.shuffle(lines)
name = lines[i].split(';')[0]
# 從檔案中讀取圖像
img = Image.open(r".\dataset2\jpg" + '/' + name)
img = img.resize((WIDTH,HEIGHT))
img = np.array(img)
img = img/255
X_train.append(img)
name = (lines[i].split(';')[1]).replace("\n", "")
# 從檔案中讀取圖像
img = Image.open(r".\dataset2\png" + '/' + name)
img = img.resize((int(WIDTH/2),int(HEIGHT/2)))
img = np.array(img)
seg_labels = np.zeros((int(HEIGHT/2),int(WIDTH/2),NCLASSES))
for c in range(NCLASSES):
seg_labels[: , : , c ] = (img[:,:,0] == c ).astype(int)
seg_labels = np.reshape(seg_labels, (-1,NCLASSES))
Y_train.append(seg_labels)
# 讀完一個周期後重新開始
i = (i+1) % n
yield (np.array(X_train),np.array(Y_train))
def loss(y_true, y_pred):
crossloss = K.binary_crossentropy(y_true,y_pred)
loss = 4 * K.sum(crossloss)/HEIGHT/WIDTH
return loss
if __name__ == "__main__":
log_dir = "logs/"
# 擷取model
model = mobilenet_unet(n_classes=NCLASSES,input_height=HEIGHT, input_width=WIDTH)
# model.summary()
BASE_WEIGHT_PATH = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.6/')
model_name = 'mobilenet_%s_%d_tf_no_top.h5' % ( '1_0' , 224 )
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = keras.utils.get_file(model_name, weight_path )
print(weight_path)
model.load_weights(weights_path,by_name=True,skip_mismatch=True)
# model.summary()
# 打開資料集的txt
with open(r".\dataset2\train.txt","r") as f:
lines = f.readlines()
# 打亂行,這個txt主要用于幫助讀取資料來訓練
# 打亂的資料更有利于訓練
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
# 90%用于訓練,10%用于估計。
num_val = int(len(lines)*0.1)
num_train = len(lines) - num_val
# 儲存的方式,1世代儲存一次
checkpoint_period = ModelCheckpoint(
log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss',
save_weights_only=True,
save_best_only=True,
period=1
)
# 學習率下降的方式,val_loss三次不下降就下降學習率繼續訓練
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=3,
verbose=1
)
# 是否需要早停,當val_loss一直不下降的時候意味着模型基本訓練完畢,可以停止
early_stopping = EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=10,
verbose=1
)
# 交叉熵
model.compile(loss = loss,
optimizer = Adam(lr=1e-3),
metrics = ['accuracy'])
batch_size = 2
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
# 開始訓練
model.fit_generator(generate_arrays_from_file(lines[:num_train], batch_size),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=generate_arrays_from_file(lines[num_train:], batch_size),
validation_steps=max(1, num_val//batch_size),
epochs=50,
initial_epoch=0,
callbacks=[checkpoint_period, reduce_lr])
model.save_weights(log_dir+'last1.h5')
預測檔案如下:
from nets.unet import mobilenet_unet
from PIL import Image
import numpy as np
import random
import copy
import os
random.seed(0)
class_colors = [[0,0,0],[0,255,0]]
NCLASSES = 2
HEIGHT = 416
WIDTH = 416
model = mobilenet_unet(n_classes=NCLASSES,input_height=HEIGHT, input_width=WIDTH)
model.load_weights("logs/ep015-loss0.070-val_loss0.076.h5")
imgs = os.listdir("./img")
for jpg in imgs:
img = Image.open("./img/"+jpg)
old_img = copy.deepcopy(img)
orininal_h = np.array(img).shape[0]
orininal_w = np.array(img).shape[1]
img = img.resize((WIDTH,HEIGHT))
img = np.array(img)
img = img/255
img = img.reshape(-1,HEIGHT,WIDTH,3)
pr = model.predict(img)[0]
pr = pr.reshape((int(HEIGHT/2), int(WIDTH/2),NCLASSES)).argmax(axis=-1)
seg_img = np.zeros((int(HEIGHT/2), int(WIDTH/2),3))
colors = class_colors
for c in range(NCLASSES):
seg_img[:,:,0] += ( (pr[:,: ] == c )*( colors[c][0] )).astype('uint8')
seg_img[:,:,1] += ((pr[:,: ] == c )*( colors[c][1] )).astype('uint8')
seg_img[:,:,2] += ((pr[:,: ] == c )*( colors[c][2] )).astype('uint8')
seg_img = Image.fromarray(np.uint8(seg_img)).resize((orininal_w,orininal_h))
image = Image.blend(old_img,seg_img,0.3)
image.save("./img_out/"+jpg)
原圖: