集合框架
Collection(单列)
结构图:

分析:Collection接口继承了Iterator,而List又继承了Collection,因此实现List的类都具有Iterator和Collection的相关方法。
List
特点:有序,可重复
ArrayList
底层:是一个数组
分析源码
字段
//默认的初始化容量
private static final int DEFAULT_CAPACITY = 10;
//空数组
private static final Object[] EMPTY_ELEMENTDATA = {};
//空数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
//arraylist底层维护的数组
transient Object[] elementData;
//数组的大小
private int size;
构造器
//指定初始化容量
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;//默认给定一个空数组
}
//传入一个Collection接口的实现类对象
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
this.elementData = EMPTY_ELEMENTDATA;
}
}
add方法
1.无参构造器
第一次扩容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList();
for (int i = 1; i <= 10 ; i++) {
list.add(i);
}
list.add(100);
}
}
//初始化数组,给定一个空数组
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
//先进行装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//执行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量为数组大小加1,即为1
elementData[size++] = e;
return true;
}
//确认数组容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//计算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {//若为空数组
return Math.max(DEFAULT_CAPACITY, minCapacity);//则容量设为10
}
return minCapacity;
}
//确认最后的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一个计数器,用于并发情况下的
if (minCapacity - elementData.length > 0)//如果最小容量大于此时数组长度,则说明要扩容
grow(minCapacity);//进行扩容
}
//扩容操作
private void grow(int minCapacity) {
int oldCapacity = elementData.length;//得到旧的数组容量(刚开始为0)
int newCapacity = oldCapacity + (oldCapacity >> 1);//容量进行右移一位再加上原来的容量,即容量变为原来的1.5倍,即还是0
if (newCapacity - minCapacity < 0)//如果新容量小于最小容量
newCapacity = minCapacity;//则将最小容量赋给新容量
if (newCapacity - MAX_ARRAY_SIZE > 0)//若新容量大于数组最大长度 (MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//进行数组复制操作
}
//最大容量
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) //若最小容量认为0,则抛出异常
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;//最小容量大于最大数组长度,则返回Integer.MAX_VALUE,否则返回MAX_ARRAY_SIZE
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素赋值给数组
return true;
}
第二次扩容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList();
for (int i = 1; i <= 10 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先进行装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//执行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量为数组大小加1,此时为11
elementData[size++] = e;
return true;
}
//确认容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//计算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//此时直接返回11
}
//确认最后的容量
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)//最小容量为11大于数组长度10,因此要进行扩容
grow(minCapacity);
}
//扩容操作
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//得到原来的数组长度为10
int newCapacity = oldCapacity + (oldCapacity >> 1);//新容量为旧容量乘以1.5倍之后,为15
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);//进行数组复制操作
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素赋值给数组
return true;
}
2.有参构造器
初始化容量
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);//初始化容量为8
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {//若容量大于0
this.elementData = new Object[initialCapacity];//进行初始化容量,即创建一个数组
} else if (initialCapacity == 0) {//若等于0
this.elementData = EMPTY_ELEMENTDATA;//则赋给一个数组
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);//初始化容量为8
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先进行装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//执行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量为数组大小加1,即为1
elementData[size++] = e;
return true;
}
//确认数组容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//计算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//直接返回1
}
//确认最后的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一个计数器,用于并发情况下的
if (minCapacity - elementData.length > 0)//如果最小容量大于此时数组长度,则说明要扩容
grow(minCapacity);//此时并不进行扩容
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素赋值给数组
return true;
}
进行扩容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先进行装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//执行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量为数组大小加1,即为9
elementData[size++] = e;
return true;
}
//确认数组容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//计算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//直接返回9
}
//确认最后的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一个计数器,用于并发情况下的
if (minCapacity - elementData.length > 0)//如果最小容量(9)大于此时数组长度(8),则说明要扩容
grow(minCapacity);//此时并不进行扩容
}
//扩容
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//旧容量为原数组大小8
int newCapacity = oldCapacity + (oldCapacity >> 1);//新容量为8*1.5=12
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);//进行数组复制
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素赋值给数组
return true;
}
LinkedList()
底层:是一个双向链表
分析源码
字段
//链表大小
transient int size = 0;//trasient 短暂的 序列化过程中不会被序列化
//头结点
transient Node<E> first;
//尾结点
transient Node<E> last;
构造器
public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
add方法
public class LinkedList_ {
public static void main(String[] args) {
LinkedList list = new LinkedList();
for (int i = 1; i <= 10; i++) {
list.add(i);
}
}
}
//无参构造器
public LinkedList() {
}
//装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add方法
public boolean add(E e) {
linkLast(e);//向链表后面追加一个元素
return true;
}
//链表尾部添加元素
void linkLast(E e) {
final Node<E> l = last;//尾结点指向结点l,此时为null
final Node<E> newNode = new Node<>(l, e, null);//创建一个新的结点,并且前驱指向l
last = newNode;//新的结点也指向last即为null
if (l == null)//如果结点l为null
first = newNode;//则新节点指向头结点
else//如果不为null
l.next = newNode;//新节点赋给结点l的后继
size++;//链表长度加1
modCount++;//修改次数加1
}
remove方法
public class LinkedList_ {
public static void main(String[] args) {
LinkedList list = new LinkedList();
for (int i = 1; i <= 10; i++) {
list.add(i);
}
list.remove();
}
}
//remove方法,其实调用的是removefirst方法
public E remove() {
return removeFirst();
}
//removeFirst方法
public E removeFirst() {
final Node<E> f = first;//将头结点赋值给一个结点
if (f == null)//如果头结点为null,则抛出异常
throw new NoSuchElementException();
return unlinkFirst(f);//进入unlinkFirst方法
}
//unlinkFirst方法
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;//取出头结点中的值
final Node<E> next = f.next;//将头结点的下一个元素赋给一个结点
f.item = null;//将头结点的值赋为null
f.next = null; //null赋给头结点的后继指向,利用GC将其回收( help GC)
first = next;//将头结点的后继结点赋给头结点
if (next == null)//若后继节点为null
last = null;//则null赋给尾结点
else
next.prev = null;//否则将null赋给后继节点的前驱指向
size--;//链表大小减1
modCount++;//修改次数+1
return element;//返回值
}
ArrayList和LinkedList的对比
- 增删用LinkedList,查找用ArrayList。
Vector
分析源码
字段
//数组
protected Object[] elementData;
//数组中元素个数
protected int elementCount;
//容量每次增加的值
protected int capacityIncrement;
//数组的最大大小
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
构造器
//有参构造器(初始化容量,容量增长量)
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//有参构造器(初始化容量)
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//无参构造器
public Vector() {
this(10);
}
//可以传入一个Collection的实现类对象
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
add方法
1.无参构造
public class Vector_ {
public static void main(String[] args) {
Vector vector = new Vector();
for (int i = 1; i <= 10 ; i++) {
vector.add(i);
}
vector.add(100);//达到10个之后,进行扩容
}
}
//进入无参构造器
public Vector() {
this(10);//初始化容量默认为10
}
public Vector(int initialCapacity) {
this(initialCapacity, 0);//容量增加量默认为0
}
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];//在这里生成一个数组赋给elementData
this.capacityIncrement = capacityIncrement;//容量增长量为0
}
//装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add操作,与ArrayList不同的是加上了synchronized关键字(因此,vector是线程安全的)
public synchronized boolean add(E e) {
modCount++;//修改次数加1
ensureCapacityHelper(elementCount + 1);//需要容量为当前数组个数+1,即0+1=1
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code()
if (minCapacity - elementData.length > 0)//如果最小容量(0)大于数组的大小(10),因此并不需要扩容
grow(minCapacity);//进行扩容
}
//第二次扩容 vector.add(100);//达到10个之后,进行扩容
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)//此时11>10,因此要进行扩容
grow(minCapacity);
}
//扩容
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//记录旧容量
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);//若容量增量大于0,则新容量等于旧容量+容量增量;否则,加上旧容量,即为2倍,此时为20
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//进行数组复制
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;//将元素复制给数组
return true;
}
2.指定初始化容量
public class Vector_ {
public static void main(String[] args) {
Vector vector = new Vector(8);
for (int i = 1; i <= 8 ; i++) {
vector.add(i);
}
vector.add(100);
}
}
public Vector(int initialCapacity) {
this(initialCapacity, 0);//此时初始容量为8
}
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];//赋一个数组大小为8的数组
this.capacityIncrement = capacityIncrement;
}
//add操作相同
//进行扩容操作 vector.add(100);
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);//此时所需最小容量为9,
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)//9>8
grow(minCapacity);//因此要进行扩容
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//记录旧容量为10
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);//新容量为10*2=20
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//复制元素
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;//将元素赋值给数组
return true;
}
ArrayList与Vector对比
- ArrayList是线程不安全的,而Vector是线程安全的
- ArrayList比Vector效率更高
Set
特点:无序,不能重复
结构
HashSet
分析源码
字段
//维护的map
private transient HashMap<E,Object> map;
//值
private static final Object PRESENT = new Object();
构造器
//无参构造器
public HashSet() {
map = new HashMap<>();
}
//可以传入一个Collection的实现类
public HashSet(Collection<? extends E> c) {
map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
}
//有参构造器(初始化容量,加载因子)
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<>(initialCapacity, loadFactor);
}
//有参构造器(初始化容量)
public HashSet(int initialCapacity) {
map = new HashMap<>(initialCapacity);
}
//底层可以使用LinkedHashMap
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
add方法
public class HashSet_ {
public static void main(String[] args) {
HashSet hashSet = new HashSet();
for (int i = 1; i <= 12 ; i++) {
hashSet.add(i);
}
hashSet.add(200);
}
}
//HashSet的底层其实就是HashMap
public HashSet() {
map = new HashMap<>();
}
//初始化HashMap
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 加载因子默认为0.75
}
//装箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add方法其实就是调用HashMap的put方法
public boolean add(E e) {
return map.put(e, PRESENT)==null;//传入键e,值是 static final Object PRESENT = new Object();
}
//put操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);//首先计算Key的hash值
}
//hash操作
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//一个对hash值操作的算法
}
//putVal操作
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)//如果hash表为空
n = (tab = resize()).length;//则进行初始化,并得到hash表的长度
if ((p = tab[i = (n - 1) & hash]) == null)//将长度与hash值进行运算得到该元素在hash表中的索引,若此索引处没有元素
tab[i] = newNode(hash, key, value, null);//直接new一个新的结点在此位置上
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))//比较数组中的元素与即将放入的元素的hash并且比较key值和equals结果,若相等则不放入,将该元素赋给e
e = p;
else if (p instanceof TreeNode)//如果链表变成了红黑树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//进行赋值
else {
for (int binCount = 0; ; ++binCount) {//将链表中的元素逐个取出,进行比较。注意这里没有判断条件,死循环
if ((e = p.next) == null) {//若后继节点为null
p.next = newNode(hash, key, value, null);//则直接在后面添加一个结点
if (binCount >= TREEIFY_THRESHOLD - 1) //若链表元素的个数大于 static final int TREEIFY_THRESHOLD = 8;
treeifyBin(tab, hash);//则进行树化
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))//进行比较该元素和即将放入元素的hash值和key值
break;
p = e;//将e指向p,一个接一个遍历
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;//修改次数+1
if (++size > threshold)//当hash表的长度大于阈值(12)时,会进行扩容
resize();
afterNodeInsertion(evict);
return null;
}
//resize操作(扩容)
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;//计算出原来的hash表的长度
int oldThr = threshold;//得到旧阈值
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {//若旧容量大于static final int MAXIMUM_CAPACITY = 1 << 30
threshold = Integer.MAX_VALUE;//则阈值设置成最大正型
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//在这里新的容量赋为原来的2倍
newThr = oldThr << 1; // 新的阈值设置成原来的2倍
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//新容量默认为16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新阈值为加载因子*默认容量=0.75*16=12
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;//将新阈值赋给map的阈值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//初始化一个Node节点的数组,大小为新容量,即为16
table = newTab;//并将这个新hash表赋给map中的hash表
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
//treeifyBin操作
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)//若hash表的长度小于最小树化大小(64),则不会进行树化,而是进行hash表的扩容
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {//下面的操作就是进行树化
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
LinkedHashSet
特点:LinkedHashSet是有序的,其实它就是数组加双向链表,每次加入一个结点,就加入道双向链表中
字段
无
构造方法
public LinkedHashSet(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor, true);
}
public LinkedHashSet(int initialCapacity) {
super(initialCapacity, .75f, true);
}
public LinkedHashSet() {
super(16, .75f, true);
}
public LinkedHashSet(Collection<? extends E> c) {
super(Math.max(2*c.size(), 11), .75f, true);
addAll(c);
}
add方法
public class LinkedHashSet_ {
public static void main(String[] args) {
LinkedHashSet linkedHashSet = new LinkedHashSet();
for (int i = 1; i <= 10; i++) {
linkedHashSet.add(i);
}
}
}
public LinkedHashSet() {
super(16, .75f, true);//初始化容量为16,加载因子为0.75
}
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);//LinkedHashSet底层其实就是LinkedHashMap
}
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;//进行初始化参数
this.threshold = tableSizeFor(initialCapacity);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);//在这里将其结点指向
return null;
}
TreeSet
特点:
- 其底层是TreeMap
- 有序
- 当hash表存入一个结点的同时,会有EntrySet里面存放指向这个结点的指针,用于快速遍历map
分析源码
字段
private transient NavigableMap<E,Object> m;
private static final Object PRESENT = new Object();
构造器
TreeSet(NavigableMap<E,Object> m) {
this.m = m;
}
public TreeSet() {
this(new TreeMap<E,Object>());
}
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
public TreeSet(Collection<? extends E> c) {
this();
addAll(c);
}
public TreeSet(SortedSet<E> s) {
this(s.comparator());
addAll(s);
}
add操作
public class TreeSet_ {
public static void main(String[] args) {
TreeSet treeSet = new TreeSet(new Comparator() {//若没有构造器,会采用自己的系统默认的构造器
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});
treeSet.add("mike");
treeSet.add("jack");
treeSet.add("lucy");
System.out.println("treeSet="+treeSet);
}
}
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public boolean add(E e) {
return m.put(e, PRESENT)==null;//值默认为object
}
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {//利用自己的构造器的compare进行比较
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
Map(双列)
结构图:
HashMap
分析源码
字段
//hash表初始化的大小为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//hash表的最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的加载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//链表转红黑树的结点数为8
static final int TREEIFY_THRESHOLD = 8;
//红黑树转链表的结点数为6(剪枝)
static final int UNTREEIFY_THRESHOLD = 6;
//最小的树化hash表大小为64
static final int MIN_TREEIFY_CAPACITY = 64;
构造器
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
put操作
public class HashMap_ {
public static void main(String[] args) {
HashMap hashMap = new HashMap();
hashMap.put("java",10);
hashMap.put("php", 10);
hashMap.put("java", 20);
}
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { //当链表中存在这个相同的结点时
V oldValue = e.value;//记录这个结点的值
if (!onlyIfAbsent || oldValue == null)//如果旧value为null的话
e.value = value;//将这个即将加入的结点的value赋给此节点的value
afterNodeAccess(e);
return oldValue;//返回老结点的value,即当put进去同一个key的键值对的话,做替换工作,返回旧的value
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashTable
特点:hashtable是线程安全的,并且key和value不能为null
分析源码
字段
private transient Entry<?,?>[] table;
private transient int count;
private int threshold;
private float loadFactor;
private transient int modCount = 0;
构造器
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
public Hashtable() {
this(11, 0.75f);
}
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
put操作
public class HashTable_ {
public static void main(String[] args) {
Hashtable hashtable = new Hashtable();
for (int i = 1; i <= 12 ; i++) {
hashtable.put(i, i);
}
}
}
public Hashtable() {
this(11, 0.75f);//初始化容量为11,加载因子为0.75
}
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//put操作,由于加上了synchronized关键字,因此hashtable是线程安全的
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {//若value为null,则会抛出空指针异常
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry<?,?> tab[] = table;
if (count >= threshold) {//阈值为11*0.75=8
// Rehash the table if the threshold is exceeded
rehash();//在这里会进行hash扩容
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
}
protected void rehash() {
int oldCapacity = table.length;
Entry<?,?>[] oldMap = table;
// overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1;//新容量为旧容量*2+1
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}
Properties
特点:其底层是hashtable
字段
构造方法
public Properties() {
this(null);
}
public Properties(Properties defaults) {
this.defaults = defaults;
}
put方法
public class Properties_ {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("jack", "杰克");
properties.put("mike", "迈克");
System.out.println(properties);
}
}
public Properties() {
this(null);
}
public Properties(Properties defaults) {
this.defaults = defaults;
}
public Hashtable() {
this(11, 0.75f);
}
//下面与hashtable相同
TreeMap
特点:有序
分析源码
字段
private final Comparator<? super K> comparator;
private transient Entry<K,V> root;
private transient int size = 0;
private transient int modCount = 0;
构造器
//初始化
public TreeMap() {
comparator = null;//compartor会设置为null
}
//有参构造(传入一个comparator的实现类)
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
put操作
public class TreeMap_ {
public static void main(String[] args) {
TreeMap treeMap = new TreeMap(new Comparator() {
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});
treeMap.put("jack", "杰克");
treeMap.put("mike", "迈克");
treeMap.put("lucy", "露西");
System.out.println("treeMap"+treeMap);
}
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;//在这里获取构造器中的comparator
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);//利用比较器里面的compare方法进行比较
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else//在这里,如果比较器为0,则说明相等
return t.setValue(value);//新的值替换掉旧的值
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
TreeMap treeMap = new TreeMap(new Comparator() {
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});