集合架構
Collection(單列)
結構圖:

分析:Collection接口繼承了Iterator,而List又繼承了Collection,是以實作List的類都具有Iterator和Collection的相關方法。
List
特點:有序,可重複
ArrayList
底層:是一個數組
分析源碼
字段
//預設的初始化容量
private static final int DEFAULT_CAPACITY = 10;
//空數組
private static final Object[] EMPTY_ELEMENTDATA = {};
//空數組
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
//arraylist底層維護的數組
transient Object[] elementData;
//數組的大小
private int size;
構造器
//指定初始化容量
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;//預設給定一個空數組
}
//傳入一個Collection接口的實作類對象
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
this.elementData = EMPTY_ELEMENTDATA;
}
}
add方法
1.無參構造器
第一次擴容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList();
for (int i = 1; i <= 10 ; i++) {
list.add(i);
}
list.add(100);
}
}
//初始化數組,給定一個空數組
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
//先進行裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//執行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量為數組大小加1,即為1
elementData[size++] = e;
return true;
}
//确認數組容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//計算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {//若為空數組
return Math.max(DEFAULT_CAPACITY, minCapacity);//則容量設為10
}
return minCapacity;
}
//确認最後的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一個計數器,用于并發情況下的
if (minCapacity - elementData.length > 0)//如果最小容量大于此時數組長度,則說明要擴容
grow(minCapacity);//進行擴容
}
//擴容操作
private void grow(int minCapacity) {
int oldCapacity = elementData.length;//得到舊的數組容量(剛開始為0)
int newCapacity = oldCapacity + (oldCapacity >> 1);//容量進行右移一位再加上原來的容量,即容量變為原來的1.5倍,即還是0
if (newCapacity - minCapacity < 0)//如果新容量小于最小容量
newCapacity = minCapacity;//則将最小容量賦給新容量
if (newCapacity - MAX_ARRAY_SIZE > 0)//若新容量大于數組最大長度 (MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//進行數組複制操作
}
//最大容量
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) //若最小容量認為0,則抛出異常
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;//最小容量大于最大數組長度,則傳回Integer.MAX_VALUE,否則傳回MAX_ARRAY_SIZE
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素指派給數組
return true;
}
第二次擴容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList();
for (int i = 1; i <= 10 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先進行裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//執行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量為數組大小加1,此時為11
elementData[size++] = e;
return true;
}
//确認容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//計算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//此時直接傳回11
}
//确認最後的容量
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)//最小容量為11大于數組長度10,是以要進行擴容
grow(minCapacity);
}
//擴容操作
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//得到原來的數組長度為10
int newCapacity = oldCapacity + (oldCapacity >> 1);//新容量為舊容量乘以1.5倍之後,為15
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);//進行數組複制操作
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素指派給數組
return true;
}
2.有參構造器
初始化容量
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);//初始化容量為8
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {//若容量大于0
this.elementData = new Object[initialCapacity];//進行初始化容量,即建立一個數組
} else if (initialCapacity == 0) {//若等于0
this.elementData = EMPTY_ELEMENTDATA;//則賦給一個數組
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);//初始化容量為8
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先進行裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//執行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量為數組大小加1,即為1
elementData[size++] = e;
return true;
}
//确認數組容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//計算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//直接傳回1
}
//确認最後的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一個計數器,用于并發情況下的
if (minCapacity - elementData.length > 0)//如果最小容量大于此時數組長度,則說明要擴容
grow(minCapacity);//此時并不進行擴容
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素指派給數組
return true;
}
進行擴容
public class ArrayList_ {
public static void main(String[] args) {
ArrayList list = new ArrayList(8);
for (int i = 1; i <= 8 ; i++) {
list.add(i);
}
list.add(100);
}
}
//先進行裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//執行add方法
public boolean add(E e) {
ensureCapacityInternal(size + 1); //需要的容量為數組大小加1,即為9
elementData[size++] = e;
return true;
}
//确認數組容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//計算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;//直接傳回9
}
//确認最後的容量(Explicit 明确的)
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//一個計數器,用于并發情況下的
if (minCapacity - elementData.length > 0)//如果最小容量(9)大于此時數組長度(8),則說明要擴容
grow(minCapacity);//此時并不進行擴容
}
//擴容
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//舊容量為原數組大小8
int newCapacity = oldCapacity + (oldCapacity >> 1);//新容量為8*1.5=12
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);//進行數組複制
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;//将元素指派給數組
return true;
}
LinkedList()
底層:是一個雙向連結清單
分析源碼
字段
//連結清單大小
transient int size = 0;//trasient 短暫的 序列化過程中不會被序列化
//頭結點
transient Node<E> first;
//尾結點
transient Node<E> last;
構造器
public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
add方法
public class LinkedList_ {
public static void main(String[] args) {
LinkedList list = new LinkedList();
for (int i = 1; i <= 10; i++) {
list.add(i);
}
}
}
//無參構造器
public LinkedList() {
}
//裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add方法
public boolean add(E e) {
linkLast(e);//向連結清單後面追加一個元素
return true;
}
//連結清單尾部添加元素
void linkLast(E e) {
final Node<E> l = last;//尾結點指向結點l,此時為null
final Node<E> newNode = new Node<>(l, e, null);//建立一個新的結點,并且前驅指向l
last = newNode;//新的結點也指向last即為null
if (l == null)//如果結點l為null
first = newNode;//則新節點指向頭結點
else//如果不為null
l.next = newNode;//新節點賦給結點l的後繼
size++;//連結清單長度加1
modCount++;//修改次數加1
}
remove方法
public class LinkedList_ {
public static void main(String[] args) {
LinkedList list = new LinkedList();
for (int i = 1; i <= 10; i++) {
list.add(i);
}
list.remove();
}
}
//remove方法,其實調用的是removefirst方法
public E remove() {
return removeFirst();
}
//removeFirst方法
public E removeFirst() {
final Node<E> f = first;//将頭結點指派給一個結點
if (f == null)//如果頭結點為null,則抛出異常
throw new NoSuchElementException();
return unlinkFirst(f);//進入unlinkFirst方法
}
//unlinkFirst方法
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;//取出頭結點中的值
final Node<E> next = f.next;//将頭結點的下一個元素賦給一個結點
f.item = null;//将頭結點的值賦為null
f.next = null; //null賦給頭結點的後繼指向,利用GC将其回收( help GC)
first = next;//将頭結點的後繼結點賦給頭結點
if (next == null)//若後繼節點為null
last = null;//則null賦給尾結點
else
next.prev = null;//否則将null賦給後繼節點的前驅指向
size--;//連結清單大小減1
modCount++;//修改次數+1
return element;//傳回值
}
ArrayList和LinkedList的對比
- 增删用LinkedList,查找用ArrayList。
Vector
分析源碼
字段
//數組
protected Object[] elementData;
//數組中元素個數
protected int elementCount;
//容量每次增加的值
protected int capacityIncrement;
//數組的最大大小
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
構造器
//有參構造器(初始化容量,容量增長量)
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//有參構造器(初始化容量)
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//無參構造器
public Vector() {
this(10);
}
//可以傳入一個Collection的實作類對象
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
add方法
1.無參構造
public class Vector_ {
public static void main(String[] args) {
Vector vector = new Vector();
for (int i = 1; i <= 10 ; i++) {
vector.add(i);
}
vector.add(100);//達到10個之後,進行擴容
}
}
//進入無參構造器
public Vector() {
this(10);//初始化容量預設為10
}
public Vector(int initialCapacity) {
this(initialCapacity, 0);//容量增加量預設為0
}
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];//在這裡生成一個數組賦給elementData
this.capacityIncrement = capacityIncrement;//容量增長量為0
}
//裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add操作,與ArrayList不同的是加上了synchronized關鍵字(是以,vector是線程安全的)
public synchronized boolean add(E e) {
modCount++;//修改次數加1
ensureCapacityHelper(elementCount + 1);//需要容量為目前數組個數+1,即0+1=1
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code()
if (minCapacity - elementData.length > 0)//如果最小容量(0)大于數組的大小(10),是以并不需要擴容
grow(minCapacity);//進行擴容
}
//第二次擴容 vector.add(100);//達到10個之後,進行擴容
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)//此時11>10,是以要進行擴容
grow(minCapacity);
}
//擴容
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//記錄舊容量
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);//若容量增量大于0,則新容量等于舊容量+容量增量;否則,加上舊容量,即為2倍,此時為20
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//進行數組複制
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;//将元素複制給數組
return true;
}
2.指定初始化容量
public class Vector_ {
public static void main(String[] args) {
Vector vector = new Vector(8);
for (int i = 1; i <= 8 ; i++) {
vector.add(i);
}
vector.add(100);
}
}
public Vector(int initialCapacity) {
this(initialCapacity, 0);//此時初始容量為8
}
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];//賦一個數組大小為8的數組
this.capacityIncrement = capacityIncrement;
}
//add操作相同
//進行擴容操作 vector.add(100);
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);//此時所需最小容量為9,
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)//9>8
grow(minCapacity);//是以要進行擴容
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;//記錄舊容量為10
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);//新容量為10*2=20
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);//複制元素
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;//将元素指派給數組
return true;
}
ArrayList與Vector對比
- ArrayList是線程不安全的,而Vector是線程安全的
- ArrayList比Vector效率更高
Set
特點:無序,不能重複
結構
HashSet
分析源碼
字段
//維護的map
private transient HashMap<E,Object> map;
//值
private static final Object PRESENT = new Object();
構造器
//無參構造器
public HashSet() {
map = new HashMap<>();
}
//可以傳入一個Collection的實作類
public HashSet(Collection<? extends E> c) {
map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
}
//有參構造器(初始化容量,加載因子)
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<>(initialCapacity, loadFactor);
}
//有參構造器(初始化容量)
public HashSet(int initialCapacity) {
map = new HashMap<>(initialCapacity);
}
//底層可以使用LinkedHashMap
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
add方法
public class HashSet_ {
public static void main(String[] args) {
HashSet hashSet = new HashSet();
for (int i = 1; i <= 12 ; i++) {
hashSet.add(i);
}
hashSet.add(200);
}
}
//HashSet的底層其實就是HashMap
public HashSet() {
map = new HashMap<>();
}
//初始化HashMap
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 加載因子預設為0.75
}
//裝箱
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//add方法其實就是調用HashMap的put方法
public boolean add(E e) {
return map.put(e, PRESENT)==null;//傳入鍵e,值是 static final Object PRESENT = new Object();
}
//put操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);//首先計算Key的hash值
}
//hash操作
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//一個對hash值操作的算法
}
//putVal操作
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)//如果hash表為空
n = (tab = resize()).length;//則進行初始化,并得到hash表的長度
if ((p = tab[i = (n - 1) & hash]) == null)//将長度與hash值進行運算得到該元素在hash表中的索引,若此索引處沒有元素
tab[i] = newNode(hash, key, value, null);//直接new一個新的結點在此位置上
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))//比較數組中的元素與即将放入的元素的hash并且比較key值和equals結果,若相等則不放入,将該元素賦給e
e = p;
else if (p instanceof TreeNode)//如果連結清單變成了紅黑樹
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//進行指派
else {
for (int binCount = 0; ; ++binCount) {//将連結清單中的元素逐個取出,進行比較。注意這裡沒有判斷條件,死循環
if ((e = p.next) == null) {//若後繼節點為null
p.next = newNode(hash, key, value, null);//則直接在後面添加一個結點
if (binCount >= TREEIFY_THRESHOLD - 1) //若連結清單元素的個數大于 static final int TREEIFY_THRESHOLD = 8;
treeifyBin(tab, hash);//則進行樹化
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))//進行比較該元素和即将放入元素的hash值和key值
break;
p = e;//将e指向p,一個接一個周遊
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;//修改次數+1
if (++size > threshold)//當hash表的長度大于門檻值(12)時,會進行擴容
resize();
afterNodeInsertion(evict);
return null;
}
//resize操作(擴容)
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;//計算出原來的hash表的長度
int oldThr = threshold;//得到舊門檻值
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {//若舊容量大于static final int MAXIMUM_CAPACITY = 1 << 30
threshold = Integer.MAX_VALUE;//則門檻值設定成最大正型
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//在這裡新的容量賦為原來的2倍
newThr = oldThr << 1; // 新的門檻值設定成原來的2倍
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//新容量預設為16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新門檻值為加載因子*預設容量=0.75*16=12
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;//将新門檻值賦給map的門檻值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//初始化一個Node節點的數組,大小為新容量,即為16
table = newTab;//并将這個新hash表賦給map中的hash表
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
//treeifyBin操作
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)//若hash表的長度小于最小樹化大小(64),則不會進行樹化,而是進行hash表的擴容
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {//下面的操作就是進行樹化
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
LinkedHashSet
特點:LinkedHashSet是有序的,其實它就是數組加雙向連結清單,每次加入一個結點,就加入道雙向連結清單中
字段
無
構造方法
public LinkedHashSet(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor, true);
}
public LinkedHashSet(int initialCapacity) {
super(initialCapacity, .75f, true);
}
public LinkedHashSet() {
super(16, .75f, true);
}
public LinkedHashSet(Collection<? extends E> c) {
super(Math.max(2*c.size(), 11), .75f, true);
addAll(c);
}
add方法
public class LinkedHashSet_ {
public static void main(String[] args) {
LinkedHashSet linkedHashSet = new LinkedHashSet();
for (int i = 1; i <= 10; i++) {
linkedHashSet.add(i);
}
}
}
public LinkedHashSet() {
super(16, .75f, true);//初始化容量為16,加載因子為0.75
}
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);//LinkedHashSet底層其實就是LinkedHashMap
}
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;//進行初始化參數
this.threshold = tableSizeFor(initialCapacity);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);//在這裡将其結點指向
return null;
}
TreeSet
特點:
- 其底層是TreeMap
- 有序
- 當hash表存入一個結點的同時,會有EntrySet裡面存放指向這個結點的指針,用于快速周遊map
分析源碼
字段
private transient NavigableMap<E,Object> m;
private static final Object PRESENT = new Object();
構造器
TreeSet(NavigableMap<E,Object> m) {
this.m = m;
}
public TreeSet() {
this(new TreeMap<E,Object>());
}
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
public TreeSet(Collection<? extends E> c) {
this();
addAll(c);
}
public TreeSet(SortedSet<E> s) {
this(s.comparator());
addAll(s);
}
add操作
public class TreeSet_ {
public static void main(String[] args) {
TreeSet treeSet = new TreeSet(new Comparator() {//若沒有構造器,會采用自己的系統預設的構造器
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});
treeSet.add("mike");
treeSet.add("jack");
treeSet.add("lucy");
System.out.println("treeSet="+treeSet);
}
}
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public boolean add(E e) {
return m.put(e, PRESENT)==null;//值預設為object
}
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {//利用自己的構造器的compare進行比較
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
Map(雙列)
結構圖:
HashMap
分析源碼
字段
//hash表初始化的大小為16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//hash表的最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//預設的加載因子為0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//連結清單轉紅黑樹的結點數為8
static final int TREEIFY_THRESHOLD = 8;
//紅黑樹轉連結清單的結點數為6(剪枝)
static final int UNTREEIFY_THRESHOLD = 6;
//最小的樹化hash表大小為64
static final int MIN_TREEIFY_CAPACITY = 64;
構造器
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
put操作
public class HashMap_ {
public static void main(String[] args) {
HashMap hashMap = new HashMap();
hashMap.put("java",10);
hashMap.put("php", 10);
hashMap.put("java", 20);
}
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { //當連結清單中存在這個相同的結點時
V oldValue = e.value;//記錄這個結點的值
if (!onlyIfAbsent || oldValue == null)//如果舊value為null的話
e.value = value;//将這個即将加入的結點的value賦給此節點的value
afterNodeAccess(e);
return oldValue;//傳回老結點的value,即當put進去同一個key的鍵值對的話,做替換工作,傳回舊的value
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashTable
特點:hashtable是線程安全的,并且key和value不能為null
分析源碼
字段
private transient Entry<?,?>[] table;
private transient int count;
private int threshold;
private float loadFactor;
private transient int modCount = 0;
構造器
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
public Hashtable() {
this(11, 0.75f);
}
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
put操作
public class HashTable_ {
public static void main(String[] args) {
Hashtable hashtable = new Hashtable();
for (int i = 1; i <= 12 ; i++) {
hashtable.put(i, i);
}
}
}
public Hashtable() {
this(11, 0.75f);//初始化容量為11,加載因子為0.75
}
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
//put操作,由于加上了synchronized關鍵字,是以hashtable是線程安全的
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {//若value為null,則會抛出空指針異常
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry<?,?> tab[] = table;
if (count >= threshold) {//門檻值為11*0.75=8
// Rehash the table if the threshold is exceeded
rehash();//在這裡會進行hash擴容
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
}
protected void rehash() {
int oldCapacity = table.length;
Entry<?,?>[] oldMap = table;
// overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1;//新容量為舊容量*2+1
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}
Properties
特點:其底層是hashtable
字段
構造方法
public Properties() {
this(null);
}
public Properties(Properties defaults) {
this.defaults = defaults;
}
put方法
public class Properties_ {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("jack", "傑克");
properties.put("mike", "邁克");
System.out.println(properties);
}
}
public Properties() {
this(null);
}
public Properties(Properties defaults) {
this.defaults = defaults;
}
public Hashtable() {
this(11, 0.75f);
}
//下面與hashtable相同
TreeMap
特點:有序
分析源碼
字段
private final Comparator<? super K> comparator;
private transient Entry<K,V> root;
private transient int size = 0;
private transient int modCount = 0;
構造器
//初始化
public TreeMap() {
comparator = null;//compartor會設定為null
}
//有參構造(傳入一個comparator的實作類)
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
put操作
public class TreeMap_ {
public static void main(String[] args) {
TreeMap treeMap = new TreeMap(new Comparator() {
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});
treeMap.put("jack", "傑克");
treeMap.put("mike", "邁克");
treeMap.put("lucy", "露西");
System.out.println("treeMap"+treeMap);
}
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;//在這裡擷取構造器中的comparator
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);//利用比較器裡面的compare方法進行比較
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else//在這裡,如果比較器為0,則說明相等
return t.setValue(value);//新的值替換掉舊的值
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
TreeMap treeMap = new TreeMap(new Comparator() {
@Override
public int compare(Object o1, Object o2) {
return ((String)o1).compareTo((String)o2);
}
});