传送门:【HDU】1402 A * B Problem Plus
题目分析:
这就是大数乘法题,问两个大数相乘的结果,由于 O(n2) 的算法复杂度太大,所以我们用FFT来优化他。关于FFT网上资料很多,我就不多说啦。
这是我做的第一道FFT,FFT是看算法导论学来的,感觉算导讲的很不错,简单易懂~
my code:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std ;
typedef long long LL ;
#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )
const int MAXN = ;
const double pi = acos ( - ) ;
struct Complex {
double r , i ;
Complex () {}
Complex ( double r , double i ) : r ( r ) , i ( i ) {}
Complex operator + ( const Complex& t ) const {
return Complex ( r + t.r , i + t.i ) ;
}
Complex operator - ( const Complex& t ) const {
return Complex ( r - t.r , i - t.i ) ;
}
Complex operator * ( const Complex& t ) const {
return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
}
} ;
void FFT ( Complex y[] , int n , int rev ) {
for ( int i = , j , k , t ; i < n ; ++ i ) {
for ( j = , k = n >> , t = i ; k ; k >>= , t >>= ) j = j << | t & ;
if ( i < j ) swap ( y[i] , y[j] ) ;
}
for ( int s = , ds = ; s <= n ; ds = s , s <<= ) {
Complex wn = Complex ( cos ( rev * * pi / s ) , sin ( rev * * pi / s ) ) , w = Complex ( , ) , t ;
for ( int k = ; k < ds ; ++ k , w = w * wn ) {
for ( int i = k ; i < n ; i += s ) {
y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
y[i] = y[i] + t ;
}
}
}
if ( rev == - ) for ( int i = ; i < n ; ++ i ) y[i].r /= n ;
}
char s1[MAXN] , s2[MAXN] ;
Complex x1[MAXN] , x2[MAXN] ;
int num[MAXN] ;
void solve () {
int n1 = strlen ( s1 ) ;
int n2 = strlen ( s2 ) ;
int n = ;
while ( n < n1 + n2 ) n <<= ;
for ( int i = ; i < n1 ; ++ i ) x1[i] = Complex ( s1[n1 - i - ] - '0' , ) ;
for ( int i = n1 ; i < n ; ++ i ) x1[i] = Complex ( , ) ;
for ( int i = ; i < n2 ; ++ i ) x2[i] = Complex ( s2[n2 - i - ] - '0' , ) ;
for ( int i = n2 ; i < n ; ++ i ) x2[i] = Complex ( , ) ;
FFT ( x1 , n , ) ;
FFT ( x2 , n , ) ;
for ( int i = ; i < n ; ++ i ) x1[i] = x1[i] * x2[i] ;
FFT ( x1 , n , - ) ;
int t = ;
for ( int i = ; i < n ; ++ i , t /= ) {
t += ( int ) ( x1[i].r + ) ;
num[i] = t % ;
}
for ( ; t ; t /= ) num[n ++] = t % ;
while ( n > && !num[n - ] ) -- n ;
for ( int i = n - ; i >= ; -- i ) printf ( "%d" , num[i] ) ;
printf ( "\n" ) ;
}
int main () {
while ( ~scanf ( "%s%s" , s1 , s2 ) ) solve () ;
return ;
}