JDK 1.8 对 HashMap 进行了比较大的优化,底层实现由之前的 “数组+链表” 改为 “数组+链表/红黑树”,关于HashMap在JDK1.7中的分析在上篇文章:
Java源码分析——HashMap(JDK1.7)
HashMap在JDK1.8的新特性
1、HashMap属性
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
}
2、HashMap()构造函数

putMapEntries()方法与JDK1.7中不同,是将m的所有元素存入本HashMap实例中。
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
// 判断table是否已经初始化
if (table == null) { // pre-size
// 未初始化,s为m的实际元素个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
关于resize()扩容方法在后续详细分析。
2、hash算法
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算。
因为h是key的hashCode值,所以h的高16位也是有值的,所以在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
HashMap.Node[] tab;
int n;
if ((tab = this.table) == null || (n = tab.length) == 0)
n = (tab = this.resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)//获取位置
tab[i] = newNode(hash, key, value, null);
...
}
在putVal源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。
3、HashMap存储
public V put(K key, V value) {
return this.putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 步骤①:tab为空则创建
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 步骤②:计算index,并对null做处理
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素
else {
Node<K,V> e; K k;
// 步骤③:节点key存在,直接覆盖value
// 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 将第一个元素赋值给e,用e来记录
e = p;
// 步骤④:判断该链为红黑树
// hash值不相等,即key不相等;为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 步骤⑤:该链为链表
// 为链表结点
else {
// 在链表最末插入结点
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
// 在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 结点数量达到阈值,转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
break;
// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 结构性修改
++modCount;
// 步骤⑥:超过最大容量 就扩容
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
putVal方法执行过程如下:
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
从源码中可知,JDK1.8中出现哈希碰撞插入数据是在链表尾部,这与JDK1.7中是不同的。
4、HashMap读取
public V get(Object key) {
Node<k,v> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// table已经初始化,长度大于0,根据hash寻找table中的项也不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 桶中第一项(数组元素)相等
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 桶中不止一个结点
if ((e = first.next) != null) {
// 为红黑树结点
if (first instanceof TreeNode)
// 在红黑树中查找
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 否则,在链表中查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
总结
- HashMap 的底层是个 Node 数组(Node<K,V>[] table),在数组的具体 索引位置,如果存在多个节点,则可能是以链表或红黑树的形式存在。
- 增加、删除、查找键值对时,首先得到key的hashCode值,然后与其高16位进行异或操作得到hash,最后进行hash&(length-1)取模操作
- HashMap 的默认初始容量(capacity)是 16,capacity 必须为 2 的幂次方;默认负载因子(load factor)是 0.75;实际能存放的节点个数= capacity * load factor。
- HashMap 在触发扩容后,阈值会变为原来的 2 倍,并且会对所有节点进行重 hash 分布,重 hash 分布后节点的新分布位置只可能有两个:“原索引位置” 或 “原索引+oldCap位置”。
例如 capacity 为16,索引位置 5 的节点扩容后,只可能分布在新表 “索引位置5” 和 “索引位置21(5+16)
- HashMap 有 threshold 属性和 loadFactor 属性,但是没有 capacity 属性。初始化时,如果传了初始化容量值,该值是存在 threshold 变量,并且 Node 数组是在第一次 put 时才会进行初始化,初始化时会将此时的 threshold 值作为新表的 capacity 值,然后用 capacity 和 loadFactor 计算新表的真正 threshold 值。
- 当同一个索引位置的节点在增加后达到 9 个时,并且此时数组的长度大于等于 64,则会触发链表节点(Node)转红黑树节点(TreeNode),转成红黑树节点后,其实链表的结构还存在,通过 next 属性维持。链表节点转红黑树节点的具体方法为源码中的 treeifyBin 方法。
- HashMap 是非线程安全的,在并发场景下使用 ConcurrentHashMap 来代替。