1. What
非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,常用于边缘检测、目标检测等计算机视觉任务。
2. Why
以目标检测为例:目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。

2. How
- 根据置信度得分进行排序;
- 选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除;
- 计算所有边界框的面积;
- 计算置信度最高的边界框与其它候选框的IoU;
- 删除IoU大于阈值的边界框;
- 重复上述过程,直至边界框列表为空。
import cv2
import numpy as np
"""
Non-max Suppression Algorithm
@param list Object candidate bounding boxes
@param list Confidence score of bounding boxes
@param float IoU threshold
@return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):
# If no bounding boxes, return empty list
if len(bounding_boxes) == 0:
return [], []
# Bounding boxes
boxes = np.array(bounding_boxes)
# coordinates of bounding boxes
start_x = boxes[:, 0]
start_y = boxes[:, 1]
end_x = boxes[:, 2]
end_y = boxes[:, 3]
# Confidence scores of bounding boxes
score = np.array(confidence_score)
# Picked bounding boxes
picked_boxes = []
picked_score = []
# Compute areas of bounding boxes
areas = (end_x - start_x + 1) * (end_y - start_y + 1)
# Sort by confidence score of bounding boxes
order = np.argsort(score)
# Iterate bounding boxes
while order.size > 0:
# The index of largest confidence score
index = order[-1]
# Pick the bounding box with largest confidence score
picked_boxes.append(bounding_boxes[index])
picked_score.append(confidence_score[index])
# Compute ordinates of intersection-over-union(IOU)
x1 = np.maximum(start_x[index], start_x[order[:-1]])
x2 = np.minimum(end_x[index], end_x[order[:-1]])
y1 = np.maximum(start_y[index], start_y[order[:-1]])
y2 = np.minimum(end_y[index], end_y[order[:-1]])
# Compute areas of intersection-over-union
w = np.maximum(0.0, x2 - x1 + 1)
h = np.maximum(0.0, y2 - y1 + 1)
intersection = w * h
# Compute the ratio between intersection and union
ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)
left = np.where(ratio < threshold)
order = order[left]
return picked_boxes, picked_score