天天看点

Sharding-Jdbc实现读写分离、分库分表,妙!

程序员的成长之路

互联网/程序员/技术/资料共享 

阅读本文大概需要 15 分钟。

ShardingSphere-Jdbc定位为轻量级Java框架,在Java的Jdbc层提供的额外服务。它使用客户端直连数据库,以jar包形式提供服务,可理解为增强版的Jdbc驱动,完全兼容Jdbc和各种ORM框架

Sharding-Jdbc实现读写分离、分库分表,妙!

1)创建主服务器所需目录

2)定义主服务器配置文件

3)创建并启动mysql主服务

4)添加复制master数据的用户reader,供从服务器使用

5)创建从服务器所需目录,编辑配置文件

6)创建并运行mysql从服务器

7)在从服务器上配置连接主服务器的信息

首先主服务器上查看<code>master_log_file</code>、<code>master_log_pos</code>两个参数,然后切换到从服务器上进行主服务器的连接信息的设置

主服务上执行:

docker查看主服务器容器的ip地址

从服务器上执行:

8)从服务器启动I/O 线程和SQL线程

Slave_IO_Running: Yes,Slave_SQL_Running: Yes即表示启动成功

1)redo log(重做日志)

InnoDB首先将redo log放入到redo log buffer,然后按一定频率将其刷新到redo log file

下列三种情况下会将redo log buffer刷新到redo log file:

Master Thread每一秒将redo log buffer刷新到redo log file

每个事务提交时会将redo log buffer刷新到redo log file

当redo log缓冲池剩余空间小于1/2时,会将redo log buffer刷新到redo log file

MySQL里常说的WAL技术,全称是Write Ahead Log,即当事务提交时,先写redo log,再修改页。也就是说,当有一条记录需要更新的时候,InnoDB会先把记录写到redo log里面,并更新Buffer Pool的page,这个时候更新操作就算完成了

Buffer Pool是物理页的缓存,对InnoDB的任何修改操作都会首先在Buffer Pool的page上进行,然后这样的页将被标记为脏页并被放到专门的Flush List上,后续将由专门的刷脏线程阶段性的将这些页面写入磁盘

InnoDB的redo log是固定大小的,比如可以配置为一组4个文件,每个文件的大小是1GB,循环使用,从头开始写,写到末尾就又回到开头循环写(顺序写,节省了随机写磁盘的IO消耗)

Sharding-Jdbc实现读写分离、分库分表,妙!

Write Pos是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。Check Point是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件

Write Pos和Check Point之间空着的部分,可以用来记录新的操作。如果Write Pos追上Check Point,这时候不能再执行新的更新,需要停下来擦掉一些记录,把Check Point推进一下

当数据库发生宕机时,数据库不需要重做所有的日志,因为Check Point之前的页都已经刷新回磁盘,只需对Check Point后的redo log进行恢复,从而缩短了恢复的时间

当缓冲池不够用时,根据LRU算法会溢出最近最少使用的页,若此页为脏页,那么需要强制执行Check Point,将脏页刷新回磁盘

2)binlog(归档日志)

MySQL整体来看就有两块:一块是Server层,主要做的是MySQL功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。redo log是InnoDB引擎特有的日志,而Server层也有自己的日志,称为binlog

binlog记录了对MySQL数据库执行更改的所有操作,不包括SELECT和SHOW这类操作,主要作用是用于数据库的主从复制及数据的增量恢复

使用mysqldump备份时,只是对一段时间的数据进行全备,但是如果备份后突然发现数据库服务器故障,这个时候就要用到binlog的日志了

binlog格式有三种:STATEMENT,ROW,MIXED

STATEMENT模式:binlog里面记录的就是SQL语句的原文。优点是并不需要记录每一行的数据变化,减少了binlog日志量,节约IO,提高性能。缺点是在某些情况下会导致master-slave中的数据不一致

ROW模式:不记录每条SQL语句的上下文信息,仅需记录哪条数据被修改了,修改成什么样了,解决了STATEMENT模式下出现master-slave中的数据不一致。缺点是会产生大量的日志,尤其是alter table的时候会让日志暴涨

MIXED模式:以上两种模式的混合使用,一般的复制使用STATEMENT模式保存binlog,对于STATEMENT模式无法复制的操作使用ROW模式保存binlog,MySQL会根据执行的SQL语句选择日志保存方式

3)redo log和binlog日志的不同

redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用

redo log是物理日志,记录的是在某个数据也上做了什么修改;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如给ID=2这一行的c字段加1

redo log是循环写的,空间固定会用完;binlog是可以追加写入的,binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志

4)两阶段提交

执行器和InnoDB引擎在执行这个update语句时的内部流程:

执行器先找到引擎取ID=2这一行。ID是主键,引擎直接用树搜索找到这一行。如果ID=2这一行所在的数据也本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回

执行器拿到引擎给的行数据,把这个值加上1,得到新的一行数据,再调用引擎接口写入这行新数据

引擎将这行新数据更新到内存中,同时将这个更新操作记录到redo log里面,此时redo log处于prepare状态。然后告知执行器执行完成了,随时可以提交事务

执行器生成这个操作的binlog,并把binlog写入磁盘

执行器调用引擎的提交事务接口,引擎把刚刚写入的redo log改成提交状态,更新完成

update语句的执行流程图如下,图中浅色框表示在InnoDB内部执行的,深色框表示是在执行器中执行的

Sharding-Jdbc实现读写分离、分库分表,妙!

将redo log的写入拆成了两个步骤:prepare和commit,这就是两阶段提交

Sharding-Jdbc实现读写分离、分库分表,妙!

从库B和主库A之间维持了一个长连接。主库A内部有一个线程,专门用于服务从库B的这个长连接。一个事务日志同步的完整过程如下:

在从库B上通过change master命令,设置主库A的IP、端口、用户名、密码,以及要从哪个位置开始请求binlog,这个位置包含文件名和日志偏移量

在从库B上执行start slave命令,这时从库会启动两个线程,就是图中的I/O线程和SQL线程。其中I/O线程负责与主库建立连接

主库A校验完用户名、密码后,开始按照从库B传过来的位置,从本地读取binlog,发给B

从库B拿到binlog后,写到本地文件,称为中继日志

SQL线程读取中继日志,解析出日志里的命令,并执行

由于多线程复制方案的引入,SQL线程演化成了多个线程

主从复制不是完全实时地进行同步,而是异步实时。这中间存在主从服务之间的执行延时,如果主服务器的压力很大,则可能导致主从服务器延时较大

1)、新建Springboot工程,引入相关依赖

2)、application.properties配置文件

3)、创建t_user表

4)、定义Controller、Mapper、Entity

5)、验证

启动日志中三个数据源初始化成功:

Sharding-Jdbc实现读写分离、分库分表,妙!

调用<code>http://localhost:8080/api/user/save</code>一直进入到ds1主节点

Sharding-Jdbc实现读写分离、分库分表,妙!

调用<code>http://localhost:8080/api/user/findUsers</code>一直进入到ds2、ds3节点,并且轮询进入

Sharding-Jdbc实现读写分离、分库分表,妙!

水平拆分:同一个表的数据拆到不同的库不同的表中。可以根据时间、地区或某个业务键维度,也可以通过hash进行拆分,最后通过路由访问到具体的数据。拆分后的每个表结构保持一致

垂直拆分:就是把一个有很多字段的表给拆分成多个表,或者是多个库上去。每个库表的结构都不一样,每个库表都包含部分字段。一般来说,可以根据业务维度进行拆分,如订单表可以拆分为订单、订单支持、订单地址、订单商品、订单扩展等表;也可以,根据数据冷热程度拆分,20%的热点字段拆到一个表,80%的冷字段拆到另外一个表

Sharding-Jdbc实现读写分离、分库分表,妙!

一般数据库的拆分也是有一个过程的,一开始是单表,后面慢慢拆成多表。那么我们就看下如何平滑的从MySQL单表过度到MySQL的分库分表架构

利用MySQL+Canal做增量数据同步,利用分库分表中间件,将数据路由到对应的新表中

利用分库分表中间件,全量数据导入到对应的新表中

通过单表数据和分库分表数据两两比较,更新不匹配的数据到新表中

数据稳定后,将单表的配置切换到分库分表配置上

Sharding-Jdbc实现读写分离、分库分表,妙!

用户数据根据订单id%2拆分为2个表,分别是:t_order0和t_order1。他们的逻辑表名是:t_order

Sharding-Jdbc实现读写分离、分库分表,妙!

多数据源相同表:

多数据源不同表:

单库分表:

全部手动指定:

上面的配置通过user_id%2来决定具体数据源,通过order_id%2来决定具体表

<code>insert into t_order(user_id,order_id) values(2,3),user_id%2 = 0</code>使用数据源ds0,<code>order_id%2 = 1</code>使用t_order1,insert语句最终操作的是数据源ds0的t_order1表。

Sharding-Jdbc可以配置分布式主键生成策略。默认使用雪花算法(snowflake),生成64bit的长整型数据,也支持UUID的方式

需求:

对1000w的用户数据进行分库分表,对用户表的数据进行分表和分库的操作。根据年龄奇数存储在t_user1,偶数t_user0,同时性别奇数存储在ds1,偶数ds0

表结构:

两个数据库中都包含t_user0和t_user1两张表

application.properties:

测试类:

官方文档:

https://shardingsphere.apache.org/document/current/cn/overview/

视频资料:

https://www.bilibili.com/video/BV1ei4y1K7dn

&lt;END&gt;