天天看点

YARN和MapReduce的内存设置参考

如何确定Yarn中容器Container,Mapreduce相关参数的内存设置,对于初始集群,由于不知道集群的类型(如cpu密集、内存密集)我们需要根据经验提供给我们一个参考配置值,来作为基础的配置。

完成这一任务有两种方式,确定YARN和MapReduce的内存设置,我们可以使用HDP工具脚本进行内存配置设定

python hdp-configuration-utils.py options

其中可选项如下:

选项

描述

-c CORES

每一个客户机的核数目

-m MEMORY

每一个客户机拥有的内存总数

-d DISK

每一个客户机拥有的磁盘数目

-k HBASE

如果Hbase安装了为”True”,否则为”False”

注:需要python26的运行环境

我们可以使用-h或-help来显示描述选项的帮助信息。

例子

运行下面的命令

python hdp-configuration-utils.py -c 16 -m 64 -d 4 -k True

结果如下:

YARN和MapReduce的内存设置参考

手动计算YARN和MapReduce内存配置设置

接下来我们将描述如何基于特定的硬件,手工的设置YARN和MapReduce内存。

YARN可以考虑集群中所有节点的可用的计算机资源。基于可用的资源,YARN会沟通协调应用程序(如:mapReduce)需要的资源。YARN会为每一个应用提供相应的容器Container。容器Container是YARN的基本处理单元,是内存和CPU资源的一种封装。

在Hadoop集群中,平衡内存RAM、处理器cpu和磁盘的使用是非常重要的。作为一般的推荐,为每个磁盘和每个核分配两个容器,为集群的利用率提供了最好的平衡。

当为一个集群决定合适的YARN和MapReduce内存设置时,从可用的硬件资源开始,注意每个节点的以下值:

RAM(内存的数量)

CORES(CPU的核数)

DISKS(磁盘的数目)

整个针对YARN和MapReduce可用的RAM数,应该考虑预留的内存。预留的内存主要用于系统进程占用和其它Hadoop进程(如Hbase)。

预留的内存=保留栈内存+Hbase预留内存(如果Hbase是部署在同一台机器上)

我们通常会使用下表来决定预留内存的大小

每个节点的总内存

推荐系统保留的内存

推荐为hbase保留的内存

4GB

1GB

8GB

2GB

16GB

24GB

48GB

6GB

64GB

72GB

96GB

12GB

128GB

256GB

32GB

512GB

接下来我们计算决定每个节点允许的最大容器的数目,我们可以使用下列公式:

containers = min (2*CORES, 1.8*DISKS, (Total available RAM) /MIN_CONTAINER_SIZE)

其中DISKS是参数每台机器中dfs.data.dirs参数的数目值。MIN_CONTAINER_SIZE是最小的容器大小(RAM)。这个值是依赖于RAM的可用数目——小的内存节点,最小的容器大小应该更小。

容器推荐值

推荐的最小容器大小

小于4GB

256MB

在4GB和8GB之间

512MB

在8GB和24GB

1024MB

大于24GB

20148MB

最终的计算结果决定了每个容器的RAM的数目。

RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))

因为这些计算,YARN和MapReduce设置如下

配置文件

配置设定

计算值

Yarn-site.xml

yarn.nodemanager.resource.memorymb

=containers*RAM-per-container

yarn.scheduler.minimum-allocationmb

= RAM-per-container

yarn-site.xml

yarn.scheduler.maximum-allocationmb

mapred-site.xml

mapreduce.map.memory.mb

mapreduce.reduce.memory.mb

= 2 * RAM-per-container

mapreduce.map.java.opts

= 0.8 * RAM-per-container

mapreduce.reduce.java.opts

= 0.8 * 2 * RAM-per-container

yarn.app.mapreduce.am.resource.mb

yarn.app.mapreduce.am.commandopts

注:在安装好后,yarn-site.xml and mapred-site.xml位于文件夹/etc/Hadoop/conf目录

举例说明:

集群节点拥有12个CPU核,48GB内存和12块磁盘

保留内存(Reserved Memory)=6GB系统预留内存+(如果有Hbase)8GB的Hbase内存

最小的容器大小(Min container size)=2GB

含有的容器数(containers)=min(2*12,1.8*12,(48-6)/2)=min(24,21.6,21)=21

每个容器的RAM(RAM-per-container)=max(2,(48-6)/21)=max(2,2)=2

根据上述例子计算出来的值

配置

yarn.nodemanager.resource.memory-mb

= 21 * 2 = 42*1024 MB

yarn.scheduler.minimum-allocation-mb

= 2*1024 MB

yarn.scheduler.maximum-allocation-mb

= 2 * 2 = 4*1024 MB

= 0.8 * 2 = 1.6*1024 MB

yarn.app.mapreduce.am.command-opts

= 0.8 * 2 * 2 = 3.2*1024 MB

如果部署了HBase

容器数目(containers)=min(2*12,1.8*12,(48-6-8)/2)=min(24,21.6,17)=17

每个容器的RAM(RAM-per-container)=max(2,(48-6-8)/17)=max(2,2)=2

 根据此时的值计算出来的值

=17*2=34*1024MB

= 17 * 2 = 34*1024 MB

备注:

1.更新属性值yarn.scheduler.minimum-allocation-mb要同时更新

导致每个节点容器数目的改变。

2.如果你安装拥有很大数目的内存,而缺少磁盘和CPU核,你可以将内存释放给其它的任务,降低参数yarn.scheduler.minimum-allocation-mb

 andyarn.nodemanager.resource.memory-mb的值

3.当前在YARN上运行MapReduce时。我们不在会去设置静态的Map和Reduce任务。整个集群将根据Job的需要动态的分配Map和Reduce任务。在我们的集群中,YARN可以在每个节点上分配10个Map和5个Reduce。

设置NameNode的对内存大小

NameNode的堆大小受很多的因数影响如文件的数目,块的数目和系统的负载。下面的表格提供了NameNode对大小的设定。这些设定经常用于典型的Hadoop集群,其中块的数目和文件的数目十分接近(一般而言,系统中平均每个文件的块数比例大概在1.1到1.2),总的来说将NameNode的堆内存设置的越大越好。

文件的数目(百万)

整个java的堆(Xmx和Xms)

年轻代大小

(-XX:NewSize-XX:MaxNewSize)

<1 million files

1024m

128m

1-5million files

3072m

512m

5-10

5376m

768m

10-20

9984m

1280m

20-30

14848m

2048m

30-40

19456m

2560m

40-50

24320m

50-70

33536m

4352m

70-100

47872m

6144m

100-125

71424m

8960m

150-200

94976m

我们应该设置-XX:PermSize为128m –XX:maxPermSize为256m

下面是对Hadoop_NameNode_Opts参数的推荐设置,在配置文件hadoop-env.sh中(将下面的####替换成-XX:NewSize,-XX:MaxNewSize,-Xms,和-Xmx可以用上上面表中推荐的值)

YARN和MapReduce的内存设置参考

-XX:+HeapDumpOnOutOfMemoryError这个参数指明了当内存错误出现时,堆的dump操作将会被执行。你也可以使用-XX:HeapDumpPath来指定heap dump文件的位置,如:另外一个有用的HADOOP_NAMENODE_OPTS参数是

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=./etc/heapdump.hprof

参考:http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.1/bk_installing_manually_book/content/rpm-chap1-11.html

           http://blog.csdn.net/suifeng3051/article/details/45477773