天天看點

image retrieval的[email protected]

模型會按照評分的從高到低,挑選K個回答。如果正确的回答在這K個當中,我們就認為這條測試樣本預測正确。顯然,K越大,事情越簡單。

首先,對于單一個查詢圖檔,在系統中搜尋它的k個最近鄰的圖檔,如果傳回的k張圖檔中有至少一張圖檔和查詢圖檔屬于同一個類,則該次查詢的score記為1,否則記為0。[email protected]則是測試集中所有查詢圖檔score的平均.

from bottleneck import argpartition

def evaluate_emb(emb, labels):
    """Evaluate embeddings based on [email protected]."""
    d_mat = get_distance_matrix(emb)  # N*N 距離矩陣
    d_mat = d_mat.asnumpy()
    labels = labels.asnumpy()

    names = []
    accs = []
    for k in [1, 2, 4, 8, 16]:
        names.append('Recall@%d' % k)
        correct, cnt = 0.0, 0.0
        for i in range(emb.shape[0]):
            d_mat[i, i] = 1e10
            nns = argpartition(d_mat[i], k)[:k]  # 擷取k近鄰的index
            if any(labels[i] == labels[nn] for nn in nns):
                correct += 1
            cnt += 1
        accs.append(correct/cnt)
    return names, accs
           

繼續閱讀