題目:
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:
s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray
[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
public class MinimumSizeSubarraySum {
public static int minSubArrayLen(int s, int[] nums) {
if (nums==null || nums.length == 0)
return 0;
int l = 0, r = -1;//nums[l...r]為滑動視窗
int sum = 0;
int res = nums.length + 1;
while (l < nums.length) {
if (r + 1 < nums.length && sum < s) {
sum += nums[++r];
} else {
sum -= nums[l++];
}
if (sum >= s) {
res = Math.min(res, r - l + 1);
}
}
return res == nums.length + 1 ? 0 : res;
}
public static void main(String[] args) {
int[] nums = {1, 2, 3, 4, 5};
int s = 11;
System.out.println(minSubArrayLen(s, nums));
}
}