天天看點

普遍意義下矢量的散度和旋度表達式以及它們的矩陣形式的推導

現有任意一個三維矢量 A ⃗ \vec A A

(高維矢量的情況類似):

(1) A ⃗ = A 1 e ^ q 1 + A 2 e ^ q 2 + A 3 e ^ q 3 \vec A=A_1\hat e_{q_1}+A_2\hat e_{q_2}+A_3\hat e_{q_3}\tag 1 A

=A1​e^q1​​+A2​e^q2​​+A3​e^q3​​(1)

e ^ q i ( i = 1 , 2 , 3 ) \hat e_{q_i}(i=1,2,3) e^qi​​(i=1,2,3)為空間中的坐标機關矢量,滿足:

(2) e ^ q i ⋅ e ^ q j = { 0 , i ≠ j 1 , i = j \hat e_{q_i}\cdot\hat e_{q_j}=\left\{ \begin{aligned} 0 &, & i\ne j \\ 1 &, & i=j \end{aligned} \right.\tag 2 e^qi​​⋅e^qj​​={01​,,​i̸​=ji=j​(2)

(3) e ^ q 1 × e ^ q 2 = e ^ q 3 e ^ q 3 × e ^ q 1 = e ^ q 2 e ^ q 2 × e ^ q 3 = e ^ q 1 \hat e_{q_1}\times\hat e_{q_2}=\hat e_{q_3}\\\hat e_{q_3}\times\hat e_{q_1}=\hat e_{q_2}\\\hat e_{q_2}\times\hat e_{q_3}=\hat e_{q_1}\tag 3 e^q1​​×e^q2​​=e^q3​​e^q3​​×e^q1​​=e^q2​​e^q2​​×e^q3​​=e^q1​​(3)

在此坐标系下,位矢全微分:

(4) d r ⃗ = ∑ i = 1 3 h i d q i e ^ q i d\vec r=\sum^3_{i=1}h_idq_i\hat e_{q_i}\tag 4 dr

=i=1∑3​hi​dqi​e^qi​​(4)

另有,無限小距離平方為:

(5) ( d s ) 2 = ( d r ⃗ ) 2 = ∑ i = 1 3 ( h i d q i ) 2 (ds)^2=(d\vec r)^2=\sum^3_{i=1}(h_idq_i)^2\tag 5 (ds)2=(dr

)2=i=1∑3​(hi​dqi​)2(5)

h i h_i hi​為每一坐标方向上的距離微元與該坐标微元的比值,稱為該坐标體系在此坐标上的度量系數:

(6) h i = d r ⃗ ⋅ e ^ q i d q i h_i=\frac{d\vec r\cdot\hat e_{q_i}}{dq_i}\tag 6 hi​=dqi​dr

⋅e^qi​​​(6)

于是,在該坐标體系中,每個坐标方向上的距離微元為:

(7) d l i = h i d q i dl_i=h_idq_i\tag 7 dli​=hi​dqi​(7)

面積微元為:

(8) d S i = h j h k d q j d q k , i , j , k 互 不 相 等 dS_i=h_jh_kdq_jdq_k,i,j,k互不相等\tag 8 dSi​=hj​hk​dqj​dqk​,i,j,k互不相等(8)

體積微元為:

(9) d V = h 1 h 2 h 3 d q 1 d q 2 d q 3 dV=h_1h_2h_3dq_1dq_2dq_3 \tag 9 dV=h1​h2​h3​dq1​dq2​dq3​(9)

一、散度

矢量 A ⃗ \vec A A

在體積元 d V dV dV表面上的通量為:

(10) d Φ = − A 1 h 2 h 3 d q 2 d q 3 + ( A 1 + ∂ A 1 ∂ q 1 d q 1 ) ( h 2 + ∂ h 2 ∂ q 1 d q 1 ) ( h 3 + ∂ h 3 ∂ q 1 d q 1 ) d q 2 d q 3 − A 2 h 1 h 3 d q 1 d q 3 + ( A 2 + ∂ A 2 ∂ q 2 d q 2 ) ( h 1 + ∂ h 1 ∂ q 2 d q 2 ) ( h 3 + ∂ h 3 ∂ q 2 d q 2 ) d q 1 d q 3 − A 3 h 1 h 2 d q 1 d q 2 + ( A 3 + ∂ A 3 ∂ q 3 d q 3 ) ( h 1 + ∂ h 1 ∂ q 3 d q 3 ) ( h 2 + ∂ h 2 ∂ q 3 d q 3 ) d q 1 d q 2 = A 1 h 2 ∂ h 3 ∂ q 1 d q 1 d q 2 d q 3 + A 1 h 3 ∂ h 2 ∂ q 1 d q 1 d q 2 d q 3 + ∂ A 1 ∂ q 1 h 2 h 3 d q 1 d q 2 d q 3 + A 2 h 1 ∂ h 3 ∂ q 2 d q 1 d q 2 d q 3 + A 2 h 3 ∂ h 1 ∂ q 2 d q 1 d q 2 d q 3 + ∂ A 2 ∂ q 2 h 1 h 3 d q 1 d q 2 d q 3 + A 3 h 1 ∂ h 2 ∂ q 3 d q 1 d q 2 d q 3 + A 3 h 2 ∂ h 1 ∂ q 3 d q 1 d q 2 d q 3 + ∂ A 3 ∂ q 3 h 1 h 2 d q 1 d q 2 d q 3 = [ ∂ ( A 1 h 2 h 3 ) ∂ q 1 + ∂ ( A 2 h 3 h 1 ) ∂ q 2 + ∂ ( A 3 h 1 h 2 ) ∂ q 3 ] d q 1 d q 2 d q 3 \begin{aligned} d\Phi &=-A_1h_2h_3dq_2dq_3+(A_1+\frac{\partial A_1}{\partial q_1}dq_1)(h_2+\frac{\partial h_2}{\partial q_1}dq_1)(h_3+\frac{\partial h_3}{\partial q_1}dq_1)dq_2dq_3\\ &-A_2h_1h_3dq_1dq_3+(A_2+\frac{\partial A_2}{\partial q_2}dq_2)(h_1+\frac{\partial h_1}{\partial q_2}dq_2)(h_3+\frac{\partial h_3}{\partial q_2}dq_2)dq_1dq_3\\ &-A_3h_1h_2dq_1dq_2+(A_3+\frac{\partial A_3}{\partial q_3}dq_3)(h_1+\frac{\partial h_1}{\partial q_3}dq_3)(h_2+\frac{\partial h_2}{\partial q_3}dq_3)dq_1dq_2\\ &=A_1h_2\frac{\partial h_3}{\partial q_1}dq_1dq_2dq_3+A_1h_3\frac{\partial h_2}{\partial q_1}dq_1dq_2dq_3+\frac{\partial A_1}{\partial q_1}h_2h_3dq_1dq_2dq_3\\ &+A_2h_1\frac{\partial h_3}{\partial q_2}dq_1dq_2dq_3+A_2h_3\frac{\partial h_1}{\partial q_2}dq_1dq_2dq_3+\frac{\partial A_2}{\partial q_2}h_1h_3dq_1dq_2dq_3\\ &+A_3h_1\frac{\partial h_2}{\partial q_3}dq_1dq_2dq_3+A_3h_2\frac{\partial h_1}{\partial q_3}dq_1dq_2dq_3+\frac{\partial A_3}{\partial q_3}h_1h_2dq_1dq_2dq_3\\ &=[\frac{\partial (A_1h_2h_3)}{\partial q_1}+\frac{\partial (A_2h_3h_1)}{\partial q_2}+\frac{\partial (A_3h_1h_2)}{\partial q_3}]dq_1dq_2dq_3 \end{aligned}\tag {10} dΦ​=−A1​h2​h3​dq2​dq3​+(A1​+∂q1​∂A1​​dq1​)(h2​+∂q1​∂h2​​dq1​)(h3​+∂q1​∂h3​​dq1​)dq2​dq3​−A2​h1​h3​dq1​dq3​+(A2​+∂q2​∂A2​​dq2​)(h1​+∂q2​∂h1​​dq2​)(h3​+∂q2​∂h3​​dq2​)dq1​dq3​−A3​h1​h2​dq1​dq2​+(A3​+∂q3​∂A3​​dq3​)(h1​+∂q3​∂h1​​dq3​)(h2​+∂q3​∂h2​​dq3​)dq1​dq2​=A1​h2​∂q1​∂h3​​dq1​dq2​dq3​+A1​h3​∂q1​∂h2​​dq1​dq2​dq3​+∂q1​∂A1​​h2​h3​dq1​dq2​dq3​+A2​h1​∂q2​∂h3​​dq1​dq2​dq3​+A2​h3​∂q2​∂h1​​dq1​dq2​dq3​+∂q2​∂A2​​h1​h3​dq1​dq2​dq3​+A3​h1​∂q3​∂h2​​dq1​dq2​dq3​+A3​h2​∂q3​∂h1​​dq1​dq2​dq3​+∂q3​∂A3​​h1​h2​dq1​dq2​dq3​=[∂q1​∂(A1​h2​h3​)​+∂q2​∂(A2​h3​h1​)​+∂q3​∂(A3​h1​h2​)​]dq1​dq2​dq3​​(10)

(以上忽略微元幂次在4次及以上的高階項)

(11) ∇ ⋅ A ⃗ = d Φ d V = 1 h 1 h 2 h 3 [ ∂ ( A 1 h 2 h 3 ) ∂ q 1 + ∂ ( A 2 h 3 h 1 ) ∂ q 2 + ∂ ( A 3 h 1 h 2 ) ∂ q 3 ] \nabla \cdot \vec A=\frac{d\Phi}{dV} =\frac{1}{h_1h_2h_3}[\frac{\partial (A_1h_2h_3)}{\partial q_1}+\frac{\partial (A_2h_3h_1)}{\partial q_2}+\frac{\partial (A_3h_1h_2)}{\partial q_3}]\tag {11} ∇⋅A

=dVdΦ​=h1​h2​h3​1​[∂q1​∂(A1​h2​h3​)​+∂q2​∂(A2​h3​h1​)​+∂q3​∂(A3​h1​h2​)​](11)

二、旋度

矢量 A ⃗ \vec A A

在各個坐标平面上微環的環流為:

(12) d Γ 1 = A 2 h 2 d q 2 + ( A 3 + ∂ A 3 ∂ q 2 d q 2 ) ( h 3 + ∂ h 3 ∂ q 2 d q 2 ) d q 3 − ( A 2 + ∂ A 2 ∂ q 3 d q 3 ) ( h 2 + ∂ h 2 ∂ q 3 d q 3 ) d q 2 − A 3 h 3 d q 3 = A 3 ∂ h 3 ∂ q 2 d q 2 d q 3 + h 3 ∂ A 3 ∂ q 2 d q 2 d q 3 − A 2 ∂ h 2 ∂ q 3 d q 2 d q 3 − h 2 ∂ A 2 ∂ q 3 d q 2 d q 3 = [ ∂ ( A 3 h 3 ) ∂ q 2 − ∂ ( A 2 h 2 ) ∂ q 3 ] d q 2 d q 3 \begin{aligned} d\Gamma_1 &=A_2h_2dq_2+(A_3+\frac{\partial A_3}{\partial q_2}dq_2)(h_3+\frac{\partial h_3}{\partial q_2}dq_2)dq_3-(A_2+\frac{\partial A_2}{\partial q_3}dq_3)(h_2+\frac{\partial h_2}{\partial q_3}dq_3)dq_2-A_3h_3dq_3\\ &=A_3\frac{\partial h_3}{\partial q_2}dq_2dq_3+h_3\frac{\partial A_3}{\partial q_2}dq_2dq_3-A_2\frac{\partial h_2}{\partial q_3}dq_2dq_3-h_2\frac{\partial A_2}{\partial q_3}dq_2dq_3\\ &=[\frac{\partial (A_3h_3)}{\partial q_2}-\frac{\partial (A_2h_2)}{\partial q_3}]dq_2dq_3 \end{aligned}\tag {12} dΓ1​​=A2​h2​dq2​+(A3​+∂q2​∂A3​​dq2​)(h3​+∂q2​∂h3​​dq2​)dq3​−(A2​+∂q3​∂A2​​dq3​)(h2​+∂q3​∂h2​​dq3​)dq2​−A3​h3​dq3​=A3​∂q2​∂h3​​dq2​dq3​+h3​∂q2​∂A3​​dq2​dq3​−A2​∂q3​∂h2​​dq2​dq3​−h2​∂q3​∂A2​​dq2​dq3​=[∂q2​∂(A3​h3​)​−∂q3​∂(A2​h2​)​]dq2​dq3​​(12)

同理可得:

(13) d Γ 2 = [ ∂ ( A 1 h 1 ) ∂ q 3 − ∂ ( A 3 h 3 ) ∂ q 1 ] d q 1 d q 3 d\Gamma_2=[\frac{\partial (A_1h_1)}{\partial q_3}-\frac{\partial (A_3h_3)}{\partial q_1}]dq_1dq_3\tag {13} dΓ2​=[∂q3​∂(A1​h1​)​−∂q1​∂(A3​h3​)​]dq1​dq3​(13)

(14) d Γ 3 = [ ∂ ( A 2 h 2 ) ∂ q 1 − ∂ ( A 1 h 1 ) ∂ q 2 ] d q 1 d q 2 d\Gamma_3=[\frac{\partial (A_2h_2)}{\partial q_1}-\frac{\partial (A_1h_1)}{\partial q_2}]dq_1dq_2\tag {14} dΓ3​=[∂q1​∂(A2​h2​)​−∂q2​∂(A1​h1​)​]dq1​dq2​(14)

(以上忽略微元幂次在3次及以上的高階項)

矢量 A ⃗ \vec A A

在各個坐标方向上的環流密度為:

(15) r o t 1 A ⃗ = d Γ 1 d S 1 = [ ∂ ( A 3 h 3 ) ∂ q 2 − ∂ ( A 2 h 2 ) ∂ q 3 ] d q 2 d q 3 h 2 h 3 d q 2 d q 3 = 1 h 2 h 3 [ ∂ ( A 3 h 3 ) ∂ q 2 − ∂ ( A 2 h 2 ) ∂ q 3 ] rot_1\vec A=\frac{d\Gamma_1}{dS_1}=\frac{[\frac{\partial (A_3h_3)}{\partial q_2}-\frac{\partial (A_2h_2)}{\partial q_3}]dq_2dq_3}{h_2h_3dq_2dq_3}=\frac{1}{h_2h_3}[\frac{\partial (A_3h_3)}{\partial q_2}-\frac{\partial (A_2h_2)}{\partial q_3}]\tag {15} rot1​A

=dS1​dΓ1​​=h2​h3​dq2​dq3​[∂q2​∂(A3​h3​)​−∂q3​∂(A2​h2​)​]dq2​dq3​​=h2​h3​1​[∂q2​∂(A3​h3​)​−∂q3​∂(A2​h2​)​](15)

(16) r o t 2 A ⃗ = d Γ 2 d S 2 = [ ∂ ( A 1 h 1 ) ∂ q 3 − ∂ ( A 3 h 3 ) ∂ q 1 ] d q 1 d q 3 h 1 h 3 d q 1 d q 3 = 1 h 1 h 3 [ ∂ ( A 1 h 1 ) ∂ q 3 − ∂ ( A 3 h 3 ) ∂ q 1 ] rot_2\vec A=\frac{d\Gamma_2}{dS_2}=\frac{[\frac{\partial (A_1h_1)}{\partial q_3}-\frac{\partial (A_3h_3)}{\partial q_1}]dq_1dq_3}{h_1h_3dq_1dq_3}=\frac{1}{h_1h_3}[\frac{\partial (A_1h_1)}{\partial q_3}-\frac{\partial (A_3h_3)}{\partial q_1}]\tag{16} rot2​A

=dS2​dΓ2​​=h1​h3​dq1​dq3​[∂q3​∂(A1​h1​)​−∂q1​∂(A3​h3​)​]dq1​dq3​​=h1​h3​1​[∂q3​∂(A1​h1​)​−∂q1​∂(A3​h3​)​](16)

(17) r o t 3 A ⃗ = d Γ 3 d S 3 = [ ∂ ( A 2 h 2 ) ∂ q 1 − ∂ ( A 1 h 1 ) ∂ q 1 ] d q 1 d q 2 h 1 h 2 d q 1 d q 2 = 1 h 1 h 2 [ ∂ ( A 2 h 2 ) ∂ q 1 − ∂ ( A 1 h 1 ) ∂ q 2 ] rot_3\vec A=\frac{d\Gamma_3}{dS_3}=\frac{[\frac{\partial (A_2h_2)}{\partial q_1}-\frac{\partial (A_1h_1)}{\partial q_1}]dq_1dq_2}{h_1h_2dq_1dq_2}=\frac{1}{h_1h_2}[\frac{\partial (A_2h_2)}{\partial q_1}-\frac{\partial (A_1h_1)}{\partial q_2}]\tag{17} rot3​A

=dS3​dΓ3​​=h1​h2​dq1​dq2​[∂q1​∂(A2​h2​)​−∂q1​∂(A1​h1​)​]dq1​dq2​​=h1​h2​1​[∂q1​∂(A2​h2​)​−∂q2​∂(A1​h1​)​](17)

故矢量 A ⃗ \vec A A

的旋度為:

(18) ∇ × A ⃗ = e ^ q 1 r o t 1 A ⃗ + e ^ q 2 r o t 2 A ⃗ + e ^ q 3 r o t 3 A ⃗ = 1 h 2 h 3 [ ∂ ( A 3 h 3 ) ∂ q 2 − ∂ ( A 2 h 2 ) ∂ q 3 ] e ^ q 1 + 1 h 1 h 3 [ ∂ ( A 1 h 1 ) ∂ q 3 − ∂ ( A 3 h 3 ) ∂ q 1 ] e ^ q 2 + 1 h 1 h 2 [ ∂ ( A 2 h 2 ) ∂ q 1 − ∂ ( A 1 h 1 ) ∂ q 2 ] e ^ q 3 = 1 h 1 h 2 h 3 ∣ h 1 e ^ q 1 h 2 e ^ q 2 h 3 e ^ q 3 ∂ ∂ q 1 ∂ ∂ q 2 ∂ ∂ q 3 h 1 A 1 h 2 A 2 h 3 A 3 ∣ \begin{aligned} \nabla\times \vec A &=\hat e_{q_1}rot_1\vec A+\hat e_{q_2}rot_2\vec A+\hat e_{q_3}rot_3\vec A\\ &=\frac{1}{h_2h_3}[\frac{\partial (A_3h_3)}{\partial q_2}-\frac{\partial (A_2h_2)}{\partial q_3}]\hat e_{q_1}+\frac{1}{h_1h_3}[\frac{\partial (A_1h_1)}{\partial q_3}-\frac{\partial (A_3h_3)}{\partial q_1}]\hat e_{q_2}+\frac{1}{h_1h_2}[\frac{\partial (A_2h_2)}{\partial q_1}-\frac{\partial (A_1h_1)}{\partial q_2}]\hat e_{q_3}\\ &=\frac{1}{h_1h_2h_3}\left |\begin{matrix} h_1\hat e_{q_1} & h_2\hat e_{q_2} & h_3\hat e_{q_3} \\\\ \frac{\partial}{\partial q_1} & \frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_3}\\\\ h_1A_1 & h_2A_2 & h_3A_3 \end{matrix} \right | \end{aligned}\tag {18} ∇×A

​=e^q1​​rot1​A

+e^q2​​rot2​A

+e^q3​​rot3​A

=h2​h3​1​[∂q2​∂(A3​h3​)​−∂q3​∂(A2​h2​)​]e^q1​​+h1​h3​1​[∂q3​∂(A1​h1​)​−∂q1​∂(A3​h3​)​]e^q2​​+h1​h2​1​[∂q1​∂(A2​h2​)​−∂q2​∂(A1​h1​)​]e^q3​​=h1​h2​h3​1​∣∣∣∣∣∣∣∣∣∣​h1​e^q1​​∂q1​∂​h1​A1​​h2​e^q2​​∂q2​∂​h2​A2​​h3​e^q3​​∂q3​∂​h3​A3​​∣∣∣∣∣∣∣∣∣∣​​(18)

三、散度以及旋度的矩陣形式

(19) A ⃗ = [ A 1 A 2 A 3 ] \vec A= \begin{bmatrix} A_1\\\\ A_2\\\\ A_3 \end{bmatrix}\tag{19} A

=⎣⎢⎢⎢⎢⎡​A1​A2​A3​​⎦⎥⎥⎥⎥⎤​(19)

(20) ∇ ⋅ A ⃗ = 1 h 1 h 2 h 3 [ ∂ ∂ q 1 ∂ ∂ q 2 ∂ ∂ q 3 ] T [ h 2 h 3 0 0 0 h 3 h 1 0 0 0 h 1 h 2 ] [ A 1 A 2 A 3 ] \nabla \cdot\vec A=\frac{1}{h_1h_2h_3} \begin{bmatrix} \frac{\partial}{\partial q_1}\\\\ \frac{\partial}{\partial q_2}\\\\ \frac{\partial}{\partial q_3} \end{bmatrix}^T \begin{bmatrix} h_2h_3 & 0 & 0\\\\ 0 & h_3h_1 & 0\\\\ 0 & 0 & h_1h_2 \end{bmatrix} \begin{bmatrix} A_1\\\\A_2\\\\A_3 \end{bmatrix}\tag{20} ∇⋅A

=h1​h2​h3​1​⎣⎢⎢⎢⎢⎡​∂q1​∂​∂q2​∂​∂q3​∂​​⎦⎥⎥⎥⎥⎤​T⎣⎢⎢⎢⎢⎡​h2​h3​00​0h3​h1​0​00h1​h2​​⎦⎥⎥⎥⎥⎤​⎣⎢⎢⎢⎢⎡​A1​A2​A3​​⎦⎥⎥⎥⎥⎤​(20)

(21) ∇ × A ⃗ = 1 h 1 h 2 h 3 [ h 1 0 0 0 h 2 0 0 0 h 3 ] [ 0 − ∂ ∂ q 3 ∂ ∂ q 2 ∂ ∂ q 3 0 − ∂ ∂ q 1 − ∂ ∂ q 2 ∂ ∂ q 1 0 ] [ h 1 0 0 0 h 2 0 0 0 h 3 ] [ A 1 A 2 A 3 ] \nabla \times\vec A=\frac{1}{h_1h_2h_3} \begin{bmatrix} h_1 & 0 & 0\\\\ 0 & h_2 & 0\\\\ 0 & 0 & h_3 \end{bmatrix} \begin{bmatrix} 0 & -\frac{\partial}{\partial q_3} & \frac{\partial}{\partial q_2}\\\\ \frac{\partial}{\partial q_3} & 0 & -\frac{\partial}{\partial q_1}\\\\ -\frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_1} & 0 \end{bmatrix} \begin{bmatrix} h_1 & 0 & 0\\\\ 0 & h_2 & 0\\\\ 0 & 0 & h_3 \end{bmatrix} \begin{bmatrix} A_1\\\\A_2\\\\A_3 \end{bmatrix}\tag{21} ∇×A

=h1​h2​h3​1​⎣⎢⎢⎢⎢⎡​h1​00​0h2​0​00h3​​⎦⎥⎥⎥⎥⎤​⎣⎢⎢⎢⎢⎡​0∂q3​∂​−∂q2​∂​​−∂q3​∂​0∂q1​∂​​∂q2​∂​−∂q1​∂​0​⎦⎥⎥⎥⎥⎤​⎣⎢⎢⎢⎢⎡​h1​00​0h2​0​00h3​​⎦⎥⎥⎥⎥⎤​⎣⎢⎢⎢⎢⎡​A1​A2​A3​​⎦⎥⎥⎥⎥⎤​(21)

附:算子運算規則(舉例說明):

ϕ ( x , y , z ) \phi(x,y,z) ϕ(x,y,z)與 ψ ( x , y , z ) \psi(x,y,z) ψ(x,y,z)是兩個函數,算子 ∇ \nabla ∇( ∇ = ( e ^ x ∂ ∂ x + e ^ y ∂ ∂ y + e ^ z ∂ ∂ z ) \nabla=(\hat e_x\frac{\partial}{\partial x}+\hat e_y\frac{\partial}{\partial y}+\hat e_z\frac{\partial}{\partial z}) ∇=(e^x​∂x∂​+e^y​∂y∂​+e^z​∂z∂​))的運算規則如下:

(22) ϕ ( x , y , z ) ∇ ψ ( x , y , z ) = ϕ ∂ ψ ∂ x e ^ x + ϕ ∂ ψ ∂ y e ^ y + ϕ ∂ ψ ∂ z e ^ z \phi(x,y,z)\nabla\psi(x,y,z)=\phi\frac{\partial\psi}{\partial x}\hat e_x+\phi\frac{\partial\psi}{\partial y}\hat e_y+\phi\frac{\partial\psi}{\partial z}\hat e_z\tag{22} ϕ(x,y,z)∇ψ(x,y,z)=ϕ∂x∂ψ​e^x​+ϕ∂y∂ψ​e^y​+ϕ∂z∂ψ​e^z​(22)