import numpy as np
# 導入動畫包
import matplotlib.animation as animation
data = np.array([
[80,200],
[95,230],
[104,245],
[112,247],
[125,259],
[135,262]
])
# 兩個數組記錄m和b的變化過程
mhistroy=[]
bhistroy=[]
# 記錄mse的變化過程
msehistory=[]
Weight =np.ones((2,1)) # m和b 采用矩陣的方式指定權重
ones = np.ones((len(data),1))
Feature = np.hstack((data[:,0:1],ones))
label = data[:,1:2]
learningrate = 0.1
m = np.zeros((2,1)) # 記錄的mse對m和b變化率的慣性
v = np.zeros((2,1)) # 記錄的mse對m和b變化率的速度
def grandentdecent3():
global Weight,m,v,learningrate
# 計算mse
mse = np.sum(np.square(np.dot(Feature,Weight)-label))
msehistory.append(mse)
# 計算slop
slop = np.dot(Feature.T,(np.dot(Feature,Weight)-label))
## adam的核心邏輯
beta_1 = 0.9
beta_2 = 0.999
m = beta_1*m +(1-beta_1)*slop
v = beta_2*v +(1-beta_2)*(slop**2)
m_p = m/(1-beta_1)
v_p = v/(1-beta_2)
Weight = Weight - learningrate*m_p/np.sqrt(v_p+0.000000001)
mhistroy.append(Weight[0][0])
bhistroy.append(Weight[1][0])
for i in range(50000):
grandentdecent7()
## 以動畫的方式展示m和b收斂的過程
%matplotlib notebook
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6,6),dpi=60)
plt.xlim(0,5)
plt.ylim(0,130)
axis_name, = plt.plot(mhistroy[0:100],bhistroy[0:100],c='r')
plt.annotate("goal",xy=(1.0859,122.68), xytext=(+10, +15),
textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->"))
def update(num):
axis_name.set_data(mhistroy[0:num*100],bhistroy[0:num*100])
animation.FuncAnimation(fig,update,np.arange(0,501),interval=20,repeat=False)
mse優化方法(四)——adarm