該筆記基于闫令琪大神的GAMES101課程及課後作業總結而成
目錄
學習過程中遇到的一些詞
線代基礎
Eigen庫的用處
矩陣/向量的練習:

學習過程中遇到的一些詞
Geometrically: Parallelogram law & Triangle law
幾何:平行四邊形定律和三角形定律
Algebraically: Simply add coordinates
代數上:簡單地添加坐标
usually orthogonal unit
通常正交單元
Cartesian Coordinates
笛卡爾坐标
Dot product
點積
Cross product
交叉積
Orthonormal bases and coordinate frames
正交基與坐标架構
Decompose a vector
分解向量
dual matrix of vector a
向量a的對偶矩陣
homogenous coordinate
齊次坐标
線代基礎
點乘可分解向量以及判斷向量之間接近or遠離
叉乘可判斷方位
點乘
叉乘求得的結果垂直于兩個原始向量,是以常用于求法線, 是以三維軟體會提供翻轉法線的功能 opengl永遠是右手系,DirectX經常是左手系
a在b的左側的意思是,a經過不大于180°的逆時針旋轉可以與b的方向一緻,右側同理,方向變為順時針
點在所有向量左側或在所有向量左側,就是多邊形内部
Eigen庫的用處
Eigen
https://eigen.tuxfamily.org/index.php?title=Main_Page
Eigen: Matrix and vector arithmetic
https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html
矩陣/向量的練習:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::cout << "Example of cpp :\n";
float a = 1.0, b = 2.0;
std::cout << a << std::endl;
std::cout << a / b << std::endl;
std::cout << std::sqrt(b) << std::endl;//√2
std::cout << std::acos(-1) << std::endl;//arccos(-1)
std::cout << std::sin(30.0 / 180.0 * acos(-1)) << std::endl;//sin(30°)
Matrix2d a;
a << 8, 2,
2, 1;
MatrixXd b(2, 2);
b << 4, 1,
1, 4;
std::cout << "a =\n" << a << std::endl;
std::cout << "b =\n" << b << std::endl;
std::cout << "a + b =\n" << a + b << std::endl;
std::cout << "a - b =\n" << a - b << std::endl;
std::cout << "Do: a += b;" << std::endl;
a += b;
std::cout << "Now: a =\n" << a << std::endl;
MatrixXf i(3,3), j(3,3);
i << 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0;
j << 2.0, 3.0, 1.0, 4.0, 6.0, 5.0, 9.0, 7.0, 8.0;
std::cout << "i * j =\n" << i*j << std::endl;
Vector3d v(1, 2, 3);
Vector3d w(1, 2, 4);
std::cout << "v =\n" << v << std::endl;
std::cout << "w =\n" << w << std::endl;
std::cout << "v - 2 * w =\n" << v - 2 * w << std::endl;
MatrixXf c(2, 3);
c << 1, 2, 3, 4, 5, 6;
std::cout << "Here is the initial matrix c:\n" << c << std::endl;
c.transposeInPlace();
std::cout << "and after being transposed:\n" << c << std::endl;
}
Example of cpp :
1
0.5
1.41421
3.14159
0.5
a =
8 2
2 1
b =
4 1
1 4
a + b =
12 3
3 5
a - b =
4 1
1 -3
Do: a += b;
Now: a =
12 3
3 5
i * j =
37 36 35
82 84 77
127 132 119
v =
1
2
3
w =
1
2
4
v - 2 * w =
-1
-2
-5
Here is the initial matrix c:
1 2 3
4 5 6
and after being transposed:
1 4
2 5
3 6