天天看點

量子糾纏生成全息圖:物體無需發光,卻可成像!

量子糾纏生成全息圖:物體無需發光,卻可成像!

新智元報道

編輯:時光

【新智元導讀】

這是一個新奇而驚人的發現!或可引發一場新醫學革命,最近,量子力學可以幫助生成全息圖,科學家無需捕捉物體發出的任何光。

一項新的研究發現,量子力學可以幫助生成全息圖,科學家無需捕捉物體發出的任何光。

量子糾纏生成全息圖:物體無需發光,卻可成像!

這是一個新奇而驚人的發現,目前已經在生物醫學領域得到了應用。

此前,全息術被稱為一場「醫學革命」,如今,量子全息術或可引發一場「新醫學革命」。

無需「看到」對象

全息圖是這樣一種圖像——就像一個2D視窗,看着一個3D場景。

傳統的全息術是用雷射束掃描物體,并将其資料編碼到記錄媒體,如膠片或底片上,進而産生全息圖。

量子糾纏生成全息圖:物體無需發光,卻可成像!

張藝謀電影《一秒鐘》,緻敬膠片時代

全息術被稱為「一場醫學革命」,在骨科和神經學科都有重要應用,它可以幫助顯示圖像,還可重建3D圖形。

量子糾纏生成全息圖:物體無需發光,卻可成像!

一直以來,全息圖使用的光傳感器在可見波下工作得最好,「使用中紅外光會使全息術的生物醫學應用受益。」德國應用光學與精密工程研究所Markus Gr fe說。

量子糾纏生成全息圖:物體無需發光,卻可成像!

現在,在量子實體學的幫助下,Gr fe和他的同僚們發現了一種新方法,無需檢測它們發出的任何光,就可以建立物體的全息圖。

「照亮這個物體的光永遠不會被探測到」Gr fe說,「被探測到的光也從不與物體互相作用」。

「量子糾纏」幫助重建全息圖

量子實體學的一個關鍵特征是——「疊加」,物體以一種「疊加」的流動狀态存在,這意味着它們本質上可以同時位于兩個或多個地方。

量子實體學的一個結果是——「糾纏」,多個粒子連接配接在一起,無論它們相距多遠,都能立即互相影響。

那麼,如果用一束光照射「非線性晶體」,這種晶體可以将每個光子分裂成2個,一個能量較低,另一個波長較長。

量子糾纏生成全息圖:物體無需發光,卻可成像!

在這項新研究中,研究人員使用一個非線性晶體,将一束紫色雷射束分成2束,其中,一束是遠紅外,另一束是近紅外。

接下來,他們用遠紅外光束照射一個樣本——一塊刻有符号的玻璃闆——而他們用錄影機記錄近紅外光。

在「糾纏」的幫助下,研究人員可以使用近紅外光的資料,并根據遠紅外光束掃描物體的細節,重建全息圖。

傳統的全息術基本上依賴于光學相幹。首先,光必須幹涉才能産生全息圖,其次,光必須相幹才能幹涉。

然而,第二部分并不完全正确,因為某些類型的光可能既不相幹又産生幹涉。

糾纏光子,由量子源以粒子對組合的形式發出,當兩個粒子糾纏在一起時,它們内在地連接配接在一起,即使它們可能在空間中分開,卻能有效地作為一個物體。

從全息攝影、全息顯微到量子全息

01 全息攝影

上世紀50年代初,匈牙利裔英國實體學家Dennis Gabor(丹尼斯·嘉伯)發明了全息攝影,并是以獲得1971年諾貝爾實體學獎。

量子糾纏生成全息圖:物體無需發光,卻可成像!

全息攝影是一種攝影過程,它記錄被物體散射的光,并以三維的方式呈現出來。

全息攝影記錄了被攝物體反射波的振幅和位相等全部資訊。

02 全息顯微

全息顯微是一種通過改變再現光的波長和波前曲率,使全息照片所成的像比原物大,得到放大率高達100倍左右的像。

量子糾纏生成全息圖:物體無需發光,卻可成像!

在全息顯微技術中,科學家通過全息圖來破譯組織和活細胞中的生物機制。

後來,這項技術通常被用于分析紅細胞,以檢測瘧疾寄生蟲的存在,以及為試管受精過程鑒定精子細胞。

03 量子全息

量子全息圖可以制作出和我們身體、細胞極其詳細的圖像。

量子全息技術呈現了目前全息攝影所沒有的特點,提高其精度、速度和範圍。

通過實作多個全息圖的同時測量,這在以前是不可能的。

量子糾纏生成全息圖:物體無需發光,卻可成像!

「利用光的量子特性,用不同的光進行照明和探測,就有可能實作成像和全息術。」Gr fe說。

Gr fe說:「我們甚至可以生成視訊圖像。」

參考資料:

https://spectrum.ieee.org/quantum-holography-using-undetected-light

https://www.sciencealert.com/quantum-holograms-could-make-ridiculously-detailed-images-of-our-bodies-and-cells

https://www.laserfocusworld.com/detectors-imaging/article/14222593/holography-goes-hyperspectral

繼續閱讀