天天看点

Apache Spark源码走读(十)ShuffleMapTask计算结果的保存与读取 &WEB UI和Metrics初始化及数据更新过程分析

ShuffleMapTask的计算结果保存在哪,随后Stage中的task又是如何知道从哪里去读取的呢,这个过程一直让我困惑不已。

用比较通俗一点的说法来解释一下Shuffle数据的写入和读取过程

每一个task负责处理一个特定的data partition

task在初始化的时候就已经明确处理结果可能会产生多少个不同的data partition

利用partitioner函数,task将处理结果存入到不同的partition,这些数据存放在当前task执行的机器上

假设当前是stage 2有两个task, stage 2可能输出4个不同的data partition, task 0和task 1各自运行于不同的机器上,task 0中的部分处理结果会存入到data partition 0,task 1的部分处理结果也可能存入到data partition 0.

由于stage 2产生了4个不同的data partition, 后续stage 1中的task个数就为4. task 0 就负责读取data partition 0的数据,对于(stage1, task0)来说,所要读取的data partition 0的内容由task 0和task 1中的partition 0共同组成。

现在问题的关键转换成为(stage_1, task_0)如何知道(stage_2, task_x)有没有相应的输出是属于data partition 0的呢?这个问题的解决就是MapStatus

每一个ShuffleMapTask在执行结束,都会上报一个MapStatus,在MapStatus中会反应出朝哪些data partition写入了数据,写入了数据则size为非零值,否则为零值

(stage_1,task_0)会去获取stage_2中所有task的MapStatus,以判定(stage_2, task_x)产生的数据中有自己需要读入的内容

假设(stage_1,task_0)知道(stage_2, task_0)生成了data partition 0中的数据,于是去(stage_2, task_0)运行时的机器去获取具体的数据,如果恰巧这个时候远端机器已经挂掉了,获取失败,怎么办?

上报异常,由DAGScheduler重新调度(stage_2,task_0),重新生成所需要的数据。

Spark不像Hadoop中的MapReduce有一个明显的combine阶段,在spark中combine过程有两次调用,一是Shuffle数据写入过程,另一个是Shuffle数据读取过程。

如果能够明白上述的过程,并对应到相应的代码,那就无须看下述的详细解释了。

好了,让我们开始代码跟踪吧。

数据写入动作最原始的触发点是ShuffleMapTask.runTask函数,看一看源码先。

managerGetWriter返回的是HashShuffleWriter,所以调用过程是:ShuffleMapTask.runTask->HashShuffleWriter.write->BlockObjectWriter.write. 注意dep.mapSideCombine这一分支判断。ReduceByKey(_ + _)中的(_ + _)在此处被执行一次,另一次执行是在read过程。

HashShuffleWriter.write中主要处理两件事:

判断是否需要进行聚合,比如<hello,1>和<hello,1>都要写入的话,那么先生成<hello,2>然后再进行后续的写入工作

利用Partitioner函数来决定<k,val>写入到哪一个文件中

Partitioner是在什么时候注入的,RDD抽象类中,Partitioner为空?以reduceByKey为例,HashPartitioner会在后面combineByKey的代码创建ShuffledRDD的时候作为ShuffledRDD的构造函数传入。

Stage在创建的时候通过构造函数入参明确需要从多少Partition读取数据,生成的Partition会有多少。看一看Stage的构造函数,读取的分区数目由RDD.partitions.size决定,输出的partitions由shuffleDep决定。

回到数据写入的问题上来,结果写入时的一个主要问题就是已经知道shuffle_id, map_id和要写入的elem,如何找到对应的写入文件。每一个临时文件由三元组(shuffle_id,map_id,reduce_id)来决定,当前已经知道了两个,还剩下一下reduce_id待确定。

reduce_id是使用partitioner计算出来的结果,输入的是elem的键值。也就是dep.partitioner.getPartition(elem._1)。 根据计算出来的bucketid找到对应的writer,然后真正写入。

在HashShuffleWriter.write中使用到的shuffle由ShuffleBlockManager的forMapTask函数生成,注意forMapTask中产生writers的代码逻辑。

每个writer分配一下文件, 文件名由三元组(shuffle_id,map_id,reduce_id)组成,如果知道了这个三元组就可以找到对应的文件。

如果consolidation没有打开,那么在一个task中,有多少个输出的partition就会有多少个中间文件。

getFile负责将三元组(shuffle_id,map_id,reduce_id)映射到文件名

产生的文件在哪呢,如果没有更改默认的配置,生成的目录结构类似于下

当所有的数据写入文件并提交以后,还需要生成MapStatus汇报给driver application. MapStatus在哪生成的呢?commitWritesAndBuildStatus就干这活。

调用关系HashShuffleWriter.stop->commitWritesAndBuildStatus

compressedSize是一个非常让人疑惑的地方,原因慢慢道来,先看一下MapStatus的构造函数

 compressedSize是一个byte数组,每一个byte反应了该partiton中的数据大小。如Array(0)=128就表示在data partition 0中有128byte数据。

问题的问题是一个byte只能表示255,如果超过255怎么办呢?

当当当,数学闪亮登场了,注意到compressSize没,通过转换将2^8变换为1.1^256。一下子由255byte延伸到近35G.

看一看这神奇的compressSize函数吧,只是聊聊几行代码而已。

 ShuffleMapTask运行结束时,会将MapStatus结果封装在StatusUpdate消息中汇报给SchedulerBackend, 由DAGScheduler在handleTaskCompletion函数中将MapStatus加入到相应的Stage。这一过程略过,不再详述。

MapOutputTrackerMaster会保存所有最新的MapStatus.

只画张图来表示存储之后的示意。

ShuffledRDD.compute函数是读取过程的触发点。

shuffleManager.getReader返回的是HashShuffleReader,所以看一看HashShuffleReader中的read函数的具体实现。

read函数处理逻辑中需要注意到一点即combine过程有可能会被再次执行。注意dep.aggregator.isDefined这一分支判断。ReduceByKey(_ + _)中的(_ + _)在此处被执行。

一路辗转,终于来到了读取过程中非常关键的所在BlockStoreShuffleFetcher。

BlockStoreShuffleFetcher需要回答如下问题

所要获取的mapid的mapstatus的内容是什么

根据获得的mapstatus去相应的blockmanager获取具体的数据

一个ShuffleMapTask会生成一个MapStatus,MapStatus中含有当前ShuffleMapTask产生的数据落到各个Partition中的大小。如果大小为0,则表示该分区没有数据产生。MapStatus中另一个重要的成员变量就是BlockManagerId,该变量表示目标数据在哪个BlockManager当中。

MapoutputTrackerMaster拥有最新的MapStatus信息,为了执行效率,MapoutputTrackerWorker会定期更新数据到本地,所以MapoutputTracker先从本地查找,如果找不到再从MapoutputTrackerMaster上同步最新数据。

索引即是reduceId,如果array(0) == 0,就表示上一个ShuffleMapTask中生成的数据中没有任意的内容可以作为reduceId为0的ResultTask的输入。如果不能理解,返回仔细看一下MapStatus的结构图。

BlockManager.getMultiple用于读取BlockManager中的数据,根据配置确定生成tNettyBlockFetcherIterator还是BasicBlockFetcherIterator。

如果所要获取的文件落在本地,则调用getLocal读取,否则发送请求到远端blockmanager。看一下BlockFetcherIterator的initialize函数

至此,数据读取的正常流程讲述完毕。

如果数据读取中碰到异常怎么办?比如,

已知(stage_2,task_0)产生的parition_0的数据在机器m1, 当前任务在m2执行,于是从m2向m1发起远程获取请求,如果m2中拥有目标数据的JVM进程异常退出,则相应的目标数据无法获取。

如果无法获取目标数据,就会上报FetchFailedException.

 FetchFailedExecption会被包装在StatutsUpdate上报给SchedulerBackend,然后一路处理下去,最终将丢失目标数据的归属Task重新提交。比如当前是(stage_1, task_0),需要读取(stage_2, task_1)产生的目标数据,但是对应的目标数据丢失,这个时候就需要将(stage_2, task_1)重新提交运行。

注意DAGScheduler中的FetchFailed处理分支,一路跟踪下去就会看到任务被重新提交了

生成的中间数据是在什么时候被清除的呢?

当Driver Application退出的时候,该Application生成的临时文件将会被一一清除,注意是application结束生命,不是job。一个application可以包含一至多个job。

以local-cluster方式运行spark-shell,观察/tmp/spark-local*目录下的文件变化,具体指令如下

Shuffle数据的写入和读取是Spark Core这一部分最为复杂的内容,彻底了解该部分内容才能深刻意识到Spark实现的精髓所在。

WEB UI和Metrics子系统为外部观察监测Spark内部运行情况提供了必要的窗口,本文将简略的过一下其内部代码实现。

先上图感受一下spark webui 假设当前已经在本机运行standalone cluster模式,输入http://127.0.0.1:8080将会看到如下页面

  driver application默认会打开4040端口进行http监听,可以看到application相关的详细信息

显示每个stage的详细信息

本节要讨论的重点是http server是如何启动的,页面中的数据是从哪里获取到的?Spark中用到的http server是jetty, jetty采用java编写,是非常轻巧的servlet engine和http server。能够嵌入到用户程序中执行,不用像tomcat或jboss那样需要自己独立的jvm进程。

SparkUI在SparkContext初始化的时候创建

initialize的主要工作是注册页面处理句柄,WebUI的子类需要实现自己的initialize函数

bind将真正启动jetty server.

在startJettyServer函数中将JettyServer运行起来的关键处理函数是connect

页面中的数据是如何获取的呢,这就要归功于SparkListener了,典型的观察者设计模式。当有与stage及task相关的事件发生时,这些Listener都将收到通知,并进行数据更新。

需要指出的是,数据尽管得以自动更新,但页面并没有,还是需要手工刷新才能得到最新的数据。

上图显示的是SparkUI中注册了哪些SparkListener子类。来看一看这些子类是在什么时候注册进去的, 注意研究一下SparkUI.initialize函

举一个实际例子来看看Notifier发送Event的时刻,比如有任务提交的时 resourceOffer->taskStarted->handleBeginEvent

post其实是向listenerBus的消息队列中添加一个消息,真正将消息发送 出去的时另一个处理线程listenerThread

Option(event).foreach(postToAll)负责将事件通知给各个Observer.postToAll的函数实现如下

在系统设计中,测量模块是不可或缺的组成部分。通过这些测量数据来感知系统的运行情况。

在Spark中,测量模块由MetricsSystem来担任,MetricsSystem中有三个重要的概念,分述如下。

instance 表示谁在使用metrics system, 目前已知的有master, worker, executor和client driver会创建metrics system用以测量

source 表示数据源,从哪里获取数据

sinks 数据目的地,将从source获取的数据发送到哪

Spark目前支持将测量数据保存或发送到如下目的地

ConsoleSink 输出到console

CSVSink 定期保存成为CSV文件

JmxSink 注册到JMX,以通过JMXConsole来查看

MetricsServlet 在SparkUI中添加MetricsServlet用以查看Task运行时的测量数据

GraphiteSink 发送给Graphite以对整个系统(不仅仅包括spark)进行监控

下面从MetricsSystem的创建,数据源的添加,数据更新与发送几个方面来跟踪一下源码。

MetricsSystem依赖于由codahale提供的第三方库Metrics,可以在metrics.codahale.com找到更为详细的介绍。

以Driver Application为例,driver application首先会初始化SparkContext,在SparkContext的初始化过程中就会创建MetricsSystem,具体调用关系如下。 SparkContext.init->SparkEnv.init->MetricsSystem.createMetricsSystem

注册数据源,继续以SparkContext为例

数据读取由Sink来完成,在Spark中创建的Sink子类如下图所示

读取最新的数据,以CsvSink为例,最主要的就是创建CsvReporter,启动之后会定期更新最近的数据到console。不同类型的Sink所使用的Reporter是不一样的。

Spark中关于metrics子系统的配置文件详见conf/metrics.properties. 默认的Sink是MetricsServlet,在任务提交执行之后,输入http://127.0.0.1:4040/metrics/json会得到以json格式保存的metrics信息。<b></b>