你是否想过,计算机为什么会加减乘除?或者更直接一点,计算机的原理到底是什么?
一、什么是二进制?
首先,从最简单的讲起。
计算机内部采用二进制,每一个数位只有两种可能"0"和"1",运算规则是"逢二进一"。举例来说,有两个位a和b,它们相加的结果只可能有四种。

这张表就叫做"真值表"(truth table),其中的sum表示"和位",carry表示"进位"。如果a和b都是0,和就是0,因此"和位"和"进位"都是0;如果a和b有一个为1,另一个为0,和就是1,不需要进位;如果a和b都是1,和就是10,因此"和位"为0,"进位"为1。
二、逻辑门(logic gate)
布尔运算(boolean operation)的规则,可以套用在二进制加法上。布尔运算有三个基本运算符:and,or,not,又称"与门"、"或门"、"非门",合称"逻辑门"。它们的运算规则是:
and:如果( a=1 and b=1 ),则输出结果为1。 or:如果( a=1 or b=1 ),则输出结果为1。 not:如果( a=1 ),则输出结果为0。
两个输入(a和b)都为1,and(与门)就输出1;只要有任意一个输入(a或b)为1,or(或门)就输出1;not(非门)的作用,则是输出一个输入值的相反值。它们的图形表示如下:
三、真值表的逻辑门表示
现在把"真值表"的运算规则,改写为逻辑门的形式。
先看sum(和位),我们需要的是这样一种逻辑:当两个输入不相同时,输出为1,因此运算符应该是or;当两个输入相同时,输出为0,这可以用两组and和not的组合实现。最后的逻辑组合图如下:
再看carry(进位)。它比较简单,两个输入a和b都为1就输出1,否则就输出0,因此用一个and运算符就行了。
现在把sum和carry组合起来,就能得到整张真值表了。这被称为"半加器"(half-adder),因为它只考虑了单独两个位的相加,没有考虑可能还存在低位进上来的位。
四、扩展的真值表和全加器
如果把低位进上来的位,当做第三个输入(input),也就是说,除了两个输入值a和b以外,还存在一个输入(input)的carry,那么问题就变成了如何在三个输入的情况下,得到输出(output)的sum(和位)和carry(进位)。
这时,真值表被扩展成下面的形式:
如果你理解了半加器的设计思路,就不难把它扩展到新的真值表,这就是"全加器"(full-adder)了。
五、全加器的串联
多个全加器串联起来,就能进行二进制的多位运算了。
先把全加器简写成方块形式,注明三个输入(a、b、cin)和两个输出(s和cout)。
然后,将四个全加器串联起来,就得到了四位加法器的逻辑图。
六、逻辑门的晶体管实现
下一步,就是用晶体管做出逻辑门的电路。
先看not。晶体管的基极(base)作为输入,集电极(collector)作为输出,发射极(emitter)接地。当输入为1(高电平),电流流向发射极,因此输出为0;当输入为0(低电平),电流从集电极流出,因此输出为1。
接着是and。这需要两个晶体管,只有当两个基极的输入都为1(高电平),电流才会流向输出端,得到1。
最后是or。这也需要两个晶体管,只要两个基极中有一个为1(高电平),电流就会流向输出端,得到1。
七、全加器的电路
将三种逻辑门的晶体管实现,代入全加器的设计图,就可以画出电路图了。
按照电路图,用晶体管和电路板组装出全加器的集成电路。
左边的三根黄线,分别代表三个输入a、b、cin;右边的两根绿线,分别代表输出s和cout。
八、制作计算机
将四块全加器的电路串联起来,就是一台货真价实的四位晶体管计算机了,可以计算0000~1111之间的加法。
电路板的下方有两组各四个开关,标注着"a"和"b",代表两个输入数。从上图可以看到,a组开关是"上下上上",代表1011(11);b组开关是"上下下下",代表1000(8)。它们的相加结果用五个led灯表示,上图中是"亮暗暗亮亮",代表10011(19),正是1011与1000的和。
九、结论
虽然这个四位计算机非常简陋,但是从中不难体会到现代计算机的原理。
完成上面的四位加法,需要用到88个晶体管。虽然当代处理器包含的晶体管数以亿计,但是本质上都是上面这样简单电路的累加。