天天看点

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

                      FLASH高速PCB布局布线设计指南

目前Flash主要有两种NOR Flash和NADN Flash

NOR Flash的读取和我们常见的SDRAM的读取是一样,用户可以直接运行装载在NOR FLASH里面的代码,这样可以减少SRAM的容量从而节约了成本。

NAND Flash没有采取内存的随机读取技术,它的读取是以一次读取一块的形式来进行的,通常是一次读取512个字节,采用这种技术的Flash比较廉价。

一般小容量的用NOR Flash,因为其读取速度快,多用来存储操作系统等重要信息,而大容量的用NAND FLASH,最常见的NAND FLASH应用是嵌入式系统采用的DOC(Disk On Chip)和我们通常用的"闪盘",可以在线擦除。

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

                                               NOR和NAND性能比较

FLASH闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只能在空或已擦除的单元内进行,所 以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为 1。

  由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。

  执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素:

  ● NOR的读速度比NAND稍快一些。

  ● NAND的写入速度比NOR快很多。

  ● NAND的4ms擦除速度远比NOR的5s快。

  ● 大多数写入操作需要先进行擦除操作。

  ● NAND的擦除单元更小,相应的擦除电路更少。

(注:NOR FLASH SECTOR擦除时间视品牌、大小不同而不同,比如,4M FLASH,有的SECTOR擦除时间为60ms,而有的需要最大6s。)

                                               NAND Flash的用途

HDD是指机械硬盘,是传统普通的硬盘,包括:盘片、磁头、磁盘旋转轴及控制电机、磁头控制器、数据转接器、接口、缓存。

SDD(Solid State Drives)是固态硬盘,包括:控制单元、存储单元(DRAM芯片/FLASH芯片)。

区别:HDD是机械式寻找数据,所以防震远低于SSD,数据寻找时间也远低于SSD。

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

                                                   FLASH管脚定义

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

根据上图翻译如下:

1. I/O0 ~ I/O7:用于输入地址/数据/命令,输出数据。

2. CLE:Command Latch Enable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能

3. ALE:Address Latch Enable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能

4. CE#:Chip Enable,芯片使能,在操作Nand Flash之前,要先选中此芯片,才能操作

5. RE#:Read Enable,读使能,在读取数据之前,要先使CE#有效。

6. WE#:Write Enable,写使能,在写取数据之前,要先使WE#有效。

7. WP#:Write Protect,写保护

8. R/B#:Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成.

9. Vcc:Power,电源

10. Vss:Ground,接地

11. N.C:Non-Connection,未定义,未连接。

                                Nand Flash数据读取操作的时序图

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

①边上的黄色竖线。

黄色竖线所处的时刻,是在发送读操作的第一个周期的命令0x00之前的那一刻。

让我们看看,在那一刻,其所穿过好几行都对应什么值,以及进一步理解,为何要那个值。

(1)黄色竖线穿过的第一行,是CLE。还记得前面介绍命令锁存使能(CLE)那个引脚吧?CLE,将CLE置1,就说明你将要通过I/O复用端口发送进入Nand Flash的,是命令,而不是地址或者其他类型的数据。只有这样将CLE置1,使其有效,才能去通知了内部硬件逻辑,你接下来将收到的是命令,内部硬件逻辑,才会将受到的命令,放到命令寄存器中,才能实现后面正确的操作,否则,不去将CLE置1使其有效,硬件会无所适从,不知道你传入的到底是数据还是命令了。

(2)而第二行,是CE#,那一刻的值是0。这个道理很简单,你既然要向Nand Flash发命令,那么先要选中它,所以,要保证CE#为低电平,使其有效,也就是片选有效----》CHIP ENABLE。

(3)第三行是WE#,意思是写使能。因为接下来是往nand Flash里面写命令,所以,要使得WE#有效,所以设为低电平。

(4)第四行,是ALE是低电平,而ALE是高电平有效,此时意思就是使其无效。而对应地,前面介绍的,使CLE有效,因为将要数据的是命令,而不是地址。如果在其他某些场合,比如接下来的要输入地址的时候,就要使其有效,而使CLE无效了。

(5)第五行,RE#,此时是高电平,无效。可以看到,直到后面第6阶段,才变成低电平,才有效,因为那时候,要发生读取命令,去读取数据。

(6)第六行,就是我们重点要介绍的,复用的输入输出I/O端口了,此刻,还没有输入数据,接下来,在不同的阶段,会输入或输出不同的数据/地址。

(7)第七行,R/B#,高电平,表示R(Ready)/就绪,因为到了后面的第5阶段,硬件内部,在第四阶段,接受了外界的读取命令后,把该页的数据一点点送到页寄存器中,这段时间,属于系统在忙着干活,属于忙的阶段,所以,R/B#才变成低,表示Busy忙的状态的。

                                                FLASH参考原理图

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南

                                                  PCB布局布线设计指南

1)布局:

(1) NAND 应靠近主控摆放;

(2)去耦电容均靠近 NAND 摆放;

(3) RE、 WE、 DQS 信号串接电阻靠近主控摆放,串阻与主控连接走线距离≤300mil;

2) 信号线走线要求:

(1) NAND 与主控走线间走线≤2000mil;

(2) 走线阻抗 50 欧;

(3)线间距≥2 倍线宽;

(4) D0~D7、 RE、 WE 相对于 DQS 做等长,控制≤300mil;

(5) D0~D7 上使用过孔的数量尽量相同;

(6)务必保证走线参考平面完整;

(7)走线尽量避开高频信号;

(8) VCC/VCCQ 线宽不小于 12mil,或直接使用敷铜代替电源走线;电源线上如有过孔,则过孔数量不少于 2 个,避免过孔限流影响供电;

                                                   FLASH实战案例展示

FLASH高速PCB布局布线设计指南                      FLASH高速PCB布局布线设计指南