ava中long类型可以表示 -9,223,372,036,854,775,808(即-2^64)到9,223,372,036,854,775,807(即2^64-1)范围内的整数。有的时候我们希望能够处理在此范围之外的整数。
为此,我们设计了一个BigInteger类。它可以支持大整数的加、减、乘操作。请根据提供的代码框架,完成整个程序。
> 注:
> 1) 请仔细阅读代码中的注释,并在标有// YOU FILL THIS IN 的位置添加你的代码。你可以添加自己的方法、变量,但是请不要修改已有的代码。
> 2) 程序中的main函数只是一个示例测试。在批改作业时,我们会用更多的用例来测试你的程序。所以请保证你的程序的正确性。
> 3) 我们在测试你的程序时,将使用合法的输入值,因此你无需考虑输入不合法的情况。输入值可能有两种形式:"343839939" 或者
"-394939399390343",输入的数字位数不固定,但一定是合法的整数。
> 4) 不允许使用java.math包。
> 5) 请将你的项目打包成rar或者zip格式提交。请注意提交的格式:打开你的压缩包,应该可以看到BigInteger文件夹,这个文件夹里面包含了src和bin两个文件夹。
如果提交作业格式错误,将不能通过测试,没有得分。
给出的代码是这样子的:
Java代码

- public class BigInteger {
- // The sign of this integer - true for a positive number, and false
- // otherwise
- private boolean sign = true;
- // digits[0] is the most significant digit of the integer, and
- // the last element of this array is the least significant digit.
- // For example, if we have a BigInteger of value 34, then
- // digits[0] = 3 and digits[1] = 4.
- private byte[] digits;
- public BigInteger() {
- this.digits = new byte[1];
- this.digits[0] = 0;
- }
- public BigInteger(byte[] digits) {
- this.digits = digits;
- }
- public BigInteger(String numberStr) {
- // YOU FILL THIS IN
- // Note: You should parse the string and initialize the "digits" array
- // properly.
- // You may also need to set the "sign" variable to a correct value.
- }
- public BigInteger add(BigInteger another) {
- // YOU FILL THIS IN
- }
- public BigInteger add(int num) {
- // YOU FILL THIS IN
- }
- public BigInteger subtract(BigInteger another) {
- // YOU FILL THIS IN
- }
- public BigInteger subtract(int num) {
- // YOU FILL THIS IN
- }
- public BigInteger multiply(BigInteger another) {
- // YOU FILL THIS IN
- }
- public BigInteger multiply(int num) {
- // YOU FILL THIS IN
- }
- public String toString() {
- StringBuffer buf = new StringBuffer();
- if (!sign) {
- buf.append("-");
- }
- for (byte d : digits) {
- buf.append(d);
- }
- return buf.toString();
- }
- public static void main(String[] args) {
- BigInteger i1 = new BigInteger("999999999999999999");
- BigInteger i2 = i1.add(1);
- System.out.println(i2); // the output should be 1000000000000000000
- BigInteger i3 = i2.multiply(i1);
- System.out.println(i3); // expected: 999999999999999999000000000000000000
- System.out.println(i3.subtract(-3)); // expected: 999999999999999999000000000000000003
- }
- }
其实,大家不要被这个看似很难的题目吓到,想想小学时我们刚开始学加法和乘法的时候,老师都教我们怎么算?竖式运算,对!由于BigInteger把每一位数都存在数组中,也为竖式运算提供了方便。
我们需要写的方法是:
public BigInteger(String numberStr);
public BigInteger add(BigInteger another);
public BigInteger add(int num);
public BigInteger subtract(BigInteger another);
public BigInteger subtract(int num);
public BigInteger multiply(BigInteger another);
public BigInteger multiply(int num);
3个小时,如果真的每个方法都写的话,估计很难做完。化归思想大家都学过,我们来运用一下:
Java代码

- public BigInteger(int integer){
- this(String.valueOf(integer));
- }
- public BigInteger add(int num) {
- return this.add(new BigInteger(num));
- }
- public BigInteger subtract(BigInteger another) {
- return this.add(another.negate());
- }
- public BigInteger subtract(int num) {
- return this.subtract(new BigInteger(num));
- }
- public BigInteger multiply(int num) {
- return this.multiply(new BigInteger(num));
- }
这里的negate方法是新加的,就是返回一个相反数。减法就是加上一个数的相反数,对吧?(注意,为了防止可能的副作用,这里使用了deep copy)
Java代码

- public BigInteger negate(){
- BigInteger bi = new BigInteger();
- byte[] digitsCopy = new byte[this.digits.length];
- for(int i = 0;i < this.digits.length;i++){
- digitsCopy[i] = this.digits[i];
- }
- bi.sign = !this.sign;
- bi.digits = digitsCopy;
- return bi;
- }
于是,我们需要写的方法减少到了3个:
public BigInteger(String numberStr);
public BigInteger add(BigInteger another);
public BigInteger multiply(BigInteger another);
第一个方法不难,只要先判断第一个字符是不是'-',然后再把不是负号的部分加到digits数组中就行。(由于明确了输入格式肯定是正确的,这里不考虑输入格式的问题):
Java代码

- public BigInteger(String numberStr) {
- // YOU FILL THIS IN
- // Note: You should parse the string and initialize the "digits" array
- // properly.
- // You may also need to set the "sign" variable to a correct value.
- if(numberStr.charAt(0) == '-'){
- sign = false;
- StringBuilder sb = new StringBuilder(numberStr);
- sb.deleteCharAt(0);
- numberStr = new String(sb);
- }else{
- sign = true;
- }
- digits = new byte[numberStr.length()];
- for(int i = 0;i < numberStr.length();i++){
- switch(numberStr.charAt(i)){
- case '0': digits[i] = 0;break;
- case '1': digits[i] = 1;break;
- case '2': digits[i] = 2;break;
- case '3': digits[i] = 3;break;
- case '4': digits[i] = 4;break;
- case '5': digits[i] = 5;break;
- case '6': digits[i] = 6;break;
- case '7': digits[i] = 7;break;
- case '8': digits[i] = 8;break;
- case '9': digits[i] = 9;break;
- }
- }
- }
然后来看public BigInteger add(BigInteger another)方法,我们要考虑什么?首先是符号,如果两数同号,那好办,和肯定是和两数符号相同的;若异号,那么我们就要看两数绝对值的大小了,和与绝对值大的数同号。
怎样判断绝对值呢?首先看位数,位数大的绝对值肯定大。位数相同,则从首位开始比较,只要有一位不同,不同位置的数字大的大;如果每一位都相同,那么我们得到的就是0,省事很多。
然后我们考虑具体的加减,同号相加(其实是绝对值相加),要考虑进位问题,而产生的和的位数最多比绝对值大的数多一位;异号相加,其实是绝对值相减,要考虑借位问题,而得到的差位数不大于绝对值大的数。
这里要特别注意的是,竖式计算的是从最末尾开始的,而我们的数组首位存储的是最高位,第二位是第二高位,一次类推;故我们这里用的循环大多同平日写的循环有些不同:for(int i = 1;i <= digits.length;i++)。
梳理好以上思路,add方法写法如下:
Java代码

- public BigInteger add(BigInteger another) {
- // YOU FILL THIS IN
- BigInteger sum = new BigInteger();
- if(this.sign == another.sign){
- //the signs of both are equal
- int length1 = this.digits.length;
- int length2 = another.digits.length;
- int biggerLength = Math.max(length1, length2);
- byte[] temp = new byte[biggerLength];
- byte carry = 0;
- for(int i = 1;i <= biggerLength;i++){
- byte i1 = (length1 - i < 0)?0:this.digits[length1 - i];
- byte i2 = (length2 - i < 0)?0:another.digits[length2 -i];
- int s = i1 + i2 + carry;
- if(s < 10){
- temp[biggerLength - i] = (byte)s;
- carry = 0;
- }else{
- temp[biggerLength - i] = (byte)(s - 10);
- carry = 1;
- }
- }
- if(carry == 0){
- sum.digits = temp;
- }else{
- sum.digits = new byte[biggerLength + 1];
- sum.digits[0] = carry;
- for(int i = 0;i < biggerLength;i++){
- sum.digits[i + 1] = temp[i];
- }
- }
- sum.sign = this.sign;
- }else{
- //the signs differ
- boolean isAbsoluteEqual = false;//the default value is false
- boolean isThisAbsoluteBigger = false;// the default value is false
- if(this.digits.length > another.digits.length){
- isThisAbsoluteBigger = true;
- }else if(this.digits.length == another.digits.length){
- isAbsoluteEqual = true;
- for(int i = 0;i < this.digits.length;i++){
- if(this.digits[i] != another.digits[i]){
- if(this.digits[i] > another.digits[i]){
- isThisAbsoluteBigger = true;
- }
- isAbsoluteEqual = false;
- break;
- }
- }
- }
- //if isAbsoluteEqual is true, the sum should be 0, which is just the default value
- if(!isAbsoluteEqual){
- byte[] temp;
- byte[] bigger;
- byte[] smaller;
- if(isThisAbsoluteBigger){
- sum.sign = this.sign;
- temp = new byte[this.digits.length];
- bigger = this.digits;
- smaller = another.digits;
- }else{
- sum.sign = another.sign;
- temp = new byte[another.digits.length];
- bigger = another.digits;
- smaller = this.digits;
- }
- boolean borrow = false;
- for(int index = 1;index <= bigger.length;index++){
- byte biggerDigit = bigger[bigger.length - index];
- biggerDigit = (byte) ((borrow)?(biggerDigit - 1):biggerDigit);
- byte smallerDigit = (smaller.length - index < 0)?0:smaller[smaller.length - index];
- int s = biggerDigit - smallerDigit;
- if(s < 0){
- borrow = true;
- s += 10;
- }else{
- borrow = false;
- }
- temp[temp.length - index] = (byte)s;
- }
- int zeroCount = 0;
- for(int i = 0;i < temp.length;i++){
- if(temp[i] == 0){
- zeroCount++;
- }else{
- break;
- }
- }
- sum.digits = new byte[temp.length - zeroCount];
- for(int i = 0;i < sum.digits.length;i++){
- sum.digits[i] = temp[zeroCount + i];
- }
- }
- }
- return sum;
- }
最后就是乘法了,其实还是竖式计算,就是稍微麻烦了一点(暂时还没找到更好的解法,3个小时,咱就不考虑什么算法优化了)。第一还是先考虑符号,这个比加法简单,要是同号,商为正,要是异号,那么商为负。
第二是具体的竖式计算怎么做,先看一个例子:
Java代码

- 1 2 3 4
- x 9 3 4
- ----------------
- 4 9 3 6
- 3 7 0 2
- + 1 1 1 0 6
- ----------------
- 1 1 5 2 5 5 6
规律是什么?1. 大数在上,小数在下; 2. 大数乘以小数的每一位,分别得到商; 3.最后把各个商按位相加。 听上去挺简单,不是吗?实现1,和加法里面的循环类似,从低位开始相乘,还要考虑进位。2中的商我们可以保存在一个二维数组中,数组第一维的大小是较小数的位数,第二维是较大数的位数+1,为什么有个+1?看看上面的第三个商,最多有可能比大数多一位。 而3呢?位数的便宜似乎比较难实现,但是想想我们上次做过的WordPuzzle,如果是个矩阵呢?其实上面的几个商,按照矩阵排列就是:
Java代码

- 0 4 9 3 6
- 0 3 7 0 2
- 1 1 1 0 6
对应的加法是沿着主对角线方向的!有点感觉了是吧,而这个矩阵就是我们刚刚做的那个二维数组!
乘法实现如下:
Java代码

- public BigInteger multiply(BigInteger another) {
- // YOU FILL THIS IN
- BigInteger product = new BigInteger();
- if(this.sign == another.sign){
- product.sign = true;
- }else{
- product.sign = false;
- }
- int biggerLength;
- int smallerLength;
- byte[] bigger;
- byte[] smaller;
- byte[][] tempProducts;
- if(this.digits.length >= another.digits.length){
- biggerLength = this.digits.length;
- smallerLength = another.digits.length;
- bigger = this.digits;
- smaller = another.digits;
- }else{
- biggerLength = another.digits.length;
- smallerLength = this.digits.length;
- bigger = another.digits;
- smaller = this.digits;
- }
- tempProducts = new byte[smallerLength][];
- for(int i = 1;i <= smallerLength;i++){
- byte[] temp = new byte[biggerLength + 1];//make plenty of space to avoid overflow
- byte carry = 0;
- byte m1 = smaller[smallerLength - i];
- for(int j = 1;j <= biggerLength;j++){
- byte m2 = bigger[biggerLength - j];
- int tempProduct = m1 * m2 + carry;
- temp[biggerLength + 1 - j] = (byte)(tempProduct % 10);
- carry = (byte)(tempProduct / 10);
- }
- temp[0] = carry;
- tempProducts[i - 1] = temp;
- }
- byte[] sum = new byte[smallerLength + biggerLength];
- byte carry = 0;
- int count = 1;
- int row = 0;
- int column = biggerLength;
- while(count <= sum.length){
- int startR = row;
- int startC = column;
- int currentSum = 0;
- while((startR < smallerLength) && (startC < biggerLength + 1)){
- currentSum += tempProducts[startR][startC];
- startR++;
- startC++;
- }
- currentSum += carry;
- if(currentSum < 10){
- sum[sum.length - count] = (byte)(currentSum);
- carry = 0;
- }else{
- sum[sum.length - count] = (byte)(currentSum % 10);
- carry = (byte)(currentSum / 10);
- }
- //System.out.println("processing digit: " + (sum.length - count) + " current digit: " + sum[sum.length - count] + " current carry: " + carry);
- if(column == 0){
- row++;
- }else{
- column--;
- }
- count++;
- }
- int zeroCount = 0;
- for(int i = 0;i < sum.length;i++){
- if(sum[i] == 0){
- zeroCount++;
- }else{
- break;
- }
- }
- product.digits = new byte[sum.length - zeroCount];
- for(int i = 0;i < product.digits.length;i++){
- product.digits[i] = sum[zeroCount + i];
- }
- return product;
- }
以上几个方法中的zeroCount和接下来跟着的循环是用来去掉数组前几位不必要的0而设计的。
用java.math包内自带的BigInteger测试了几个相同的实例:
Java代码

- public static void main(String[] args) {
- BigInteger bi = new BigInteger("-123456789").multiply(new BigInteger("1111111111")).multiply(new BigInteger("-222222222")).multiply(new BigInteger("333333333")).multiply(new BigInteger("-444444444")).multiply(new BigInteger("555555555")).multiply(new BigInteger("678987654"));
- System.out.println(bi);
- BigInteger bi2 = new BigInteger("123456789").multiply(new BigInteger("-999999999").multiply(new BigInteger("2387423749237")));
- System.out.println(bi2);
- System.out.println(bi.subtract(bi2));
- System.out.println(bi.add(bi2));
- }
得到的结果:(没两行上面的是java.math包内的BigInteger的结果,下面是我写的BigInteger的结果)
Java代码

- -1703513391044005504226057865745939441413078537590685258276720
- -1703513391044005504226057865745939441413078537590685258276720
- -294743669768397549929858780007
- -294743669768397549929858780007
- -1703513391044005504226057865745644697743310140040755399496713
- -1703513391044005504226057865745644697743310140040755399496713
- -1703513391044005504226057865746234185082846935140615117056727
- -1703513391044005504226057865746234185082846935140615117056727