天天看点

智能数字图像处理:MobileNetV2代码(pytorch)之model.py解读

1. def __init__(groups=1):-》group=1表示是普通卷积,group=2表示Depthwise(DW)卷积。

2.padding = (kernel_size - 1) // 2-》padding由kernel_size来决定。

3.然后定义网络结构: 

super(ConvBNReLU, self).__init__(

            nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),

            nn.BatchNorm2d(out_channel),

            nn.ReLU6(inplace=True)

        )

到这里ConvBNReLU网络结构定义完毕!

定义倒参差网络结构

1.expand_ratio-》表示扩展因子。

2.hidden_channel = in_channel * expand_ratio中的hidden_channel表示输出深度也是卷积核数量。

3.use_shortcut-》判断是否在正向传播过程中使用Mobile的捷径分支。

4.stride == 1 and in_channel == out_channel-》判断使用捷径分支条件:stride == 1并且输入深度等于输出深度。

5. if expand_ratio != 1:-》判断扩展因子是不是等于1,不等于1就添加一个1x1的卷积层。等于1的话就没有1x1的卷积层。

接下来添加一系列的层结构:

layers.extend([

            # 3x3 depthwise conv

            ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),

            # 1x1 pointwise conv(linear)

            nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),

            nn.BatchNorm2d(out_channel),

        ])

forward前向传播:

    def forward(self, x):

        if self.use_shortcut:

            return x + self.conv(x)

        else:

            return self.conv(x)

-》如果use_shortcut为TRUE的话使用捷径分支,返回卷积结果和捷径分支的和。如果为FALSE返回主分支卷积结果。

定义MobileNetV2的网络结构:

_make_divisible()作用将卷积核个数调整到8的整数倍。

智能数字图像处理:MobileNetV2代码(pytorch)之model.py解读

1.features.append(ConvBNReLU(3, input_channel, stride=2))-》添加第一个卷积层。

2.循环遍历bottleneck的参数列表:

for t, c, n, s in inverted_residual_setting:

            output_channel = _make_divisible(c * alpha, round_nearest)

            for i in range(n):

                stride = s if i == 0 else 1-》stride如果是第一层赋值s如果不是第一层赋值为1

                features.append(block(input_channel, output_channel, stride, expand_ratio=t))

                input_channel = output_channel -》搭建每一个倒参差结构

3. features.append(ConvBNReLU(input_channel, last_channel, 1))-》搭建1x1的卷积层。

4.self.features = nn.Sequential(*features)-》特征提取层完毕,定义为features。

5.self.avgpool = nn.AdaptiveAvgPool2d((1, 1))-》平均池化

搭建分类层:

        self.classifier = nn.Sequential(

            nn.Dropout(0.2),

            nn.Linear(last_channel, num_classes)

        )

前向传播:

    def forward(self, x):

        x = self.features(x)

        x = self.avgpool(x)

        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

features特征提取层-》avgpool池化层-》flatten展平降维-》classifier全连接分类

from torch import nn
import torch


def _make_divisible(ch, divisor=8, min_ch=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_ch is None:
        min_ch = divisor
    new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_ch < 0.9 * ch:
        new_ch += divisor
    return new_ch


class ConvBNReLU(nn.Sequential):
    def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU6(inplace=True)
        )


class InvertedResidual(nn.Module):
    def __init__(self, in_channel, out_channel, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        hidden_channel = in_channel * expand_ratio
        self.use_shortcut = stride == 1 and in_channel == out_channel

        layers = []
        if expand_ratio != 1:
            # 1x1 pointwise conv
            layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))
        layers.extend([
            # 3x3 depthwise conv
            ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),
            # 1x1 pointwise conv(linear)
            nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channel),
        ])

        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        if self.use_shortcut:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, num_classes=1000, alpha=1.0, round_nearest=8):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = _make_divisible(32 * alpha, round_nearest)
        last_channel = _make_divisible(1280 * alpha, round_nearest)

        inverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]

        features = []
        # conv1 layer
        features.append(ConvBNReLU(3, input_channel, stride=2))
        # building inverted residual residual blockes
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * alpha, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        features.append(ConvBNReLU(input_channel, last_channel, 1))
        # combine feature layers
        self.features = nn.Sequential(*features)

        # building classifier
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(last_channel, num_classes)
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x
           

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

继续阅读