天天看点

架构师之路-JVM面试知识点总结

1,说一下 JVM 的主要组成部分及其作用?

=运行时数据区域 (Runtime data area)(组件)(JVM的内存)

==多线程共享内存区域:

=== 方法区 Method Area

用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译后的代码等数据。(静态变量放在方法区)

常量池中存储编译器生成的各种字面量和符号引用。字面量就是Java中常量的意思。比如文本字符串,final修饰的常量等。方法引用则包括类和接口的全限定名,方法名和描述符,字段名和描述符等。

常量池有什么用 ?

优点:常量池避免了频繁的创建和销毁对象而影响系统性能,其实现了对象的共享。

举个栗子:

Integer 常量池(缓存池),和字符串常量池

Integer i1 = new Integer(66);

Integer i2 = new integer(66);

Integer i3 = 66;

Integer i4 = 66;

Integer i5 = 150;

Integer i6 = 150;

System.out.println(i1 == i2);//false

System.out.println(i3 == i4);//true

System.out.println(i5 == i6);//false

Integer i3 = 66 实际上有一步装箱的操作,即将 int 型的 66 装箱成 Integer,通过 Integer 的 valueOf 方法。

Integer 的 valueOf 方法很简单,它判断变量是否在 IntegerCache 的最小值(-128)和最大值(127)之间,如果在,则返回常量池中的内容,否则 new 一个 Integer 对象。

String常量池:

String 是由 final 修饰的类,是不可以被继承的。通常有两种方式来创建对象。

String str1 = new String(“abcd”);

String str2 = new String(“abcd”);

System.out.print(str1 == str2);//false

第一种使用 new 创建的对象,存放在堆中。每次调用都会创建一个新的对象。

String str1 = “abcd”;

String str2 = “abcd”;

System.out.print(str1 == str2);//true

第二种先在栈上创建一个 String 类的对象引用变量 str,然后通过符号引用去字符串常量池中找有没有 “abcd”,如果常量池中已经有“abcd”了,则不会再常量池中创建“abcd”,而是直接将 str 引用指向常量池中的“abcd”。

String b = “a” + 3.4;

System.out.println((a == b)); //result = true

对于字符串常量的 + 号连接,在程序编译期,JVM就会将其优化为 + 号连接后的值。所以在编译期其字符串常量的值就确定了。

String str3 = str1 + “b”;

System.out.print(str2 == str3);//false

对于字符串引用的 + 号连接问题,由于字符串引用在编译期是无法确定下来的,在程序的运行期动态分配并创建新的地址存储对象。

final 修饰的变量是一个常量,编译期就能确定其值。所以 str1 + "b"就等同于 “a” + “b”,所以结果是 true。

JDK1.6,JDK1.7,JDK1.8不同版本JVM内存模型区别

相对于jdk1.6,jDK1.7将运行时常量池从方法区移除到堆内存。( jDK1.7 -XX:PermSize=128m -XX:MaxPermSize=256m)

相对于JDK1.6,JDK1.8直接将方法区去掉,在本地内存中新增元数据空间。运行时常量池仍然在堆中。元数据区存放类加载信息。(jdk1.8 -XX:MetaspaceSize=128m -xx:MaxMetaspaceSize=256m)

JDK1.8为什么要移除方法区

1)永久代来存储类信息、常量、静态变量等数据不是个好主意, 很容易遇到内存溢出的问题.JDK8的实现中将类的元数据放入 native memory, 将字符串池和类的静态变量放入java堆中. 可以使用MaxMetaspaceSize对元数据区大小进行调整;

2)对永久代进行调优是很困难的,同时将元空间与堆的垃圾回收进行了隔离,避免永久代引发的Full GC和OOM等问题;

===堆 heap

堆的物理地址分配对对象是不连续的。因此性能慢些。在GC的时候也要考虑到不连续的分配,所以有各种算法。比如,标记-消除,复制,标记-压缩,分代(即新生代使用复制算法,老年代使用标记——压缩)

堆因为是不连续的,所以分配的内存是在 运行期 确认的,因此大小不固定。一般堆大小远远大于栈。

堆存放:堆内存用来存储Java中的对象。无论是成员变量,局部变量,还是类变量,它们指向的对象都存储在堆内存中,对象的实例和数组。因此该区更关注的是数据的存储.(静态的对象还是放在堆。)

Java堆是程序员需要重点关注的一块区域,因为涉及到内存的分配(new关键字,反射等)与回收(回收算法,收集器等);

-Xms1024m -Xmx1024m -Xms堆的开始时的大小 -Xmx选项可以设置堆的最大值

-XX:NewSize=256m -XX:MaxNewSize=256m (新生代最大堆大小)

==线程独享内存:

===栈 java virtual machine stacks

栈使用的是数据结构中的栈,先进后出的原则,物理地址分配是连续的。所以性能快。

栈是连续的,所以分配的内存大小要在 编译期 就确认,大小是固定的。

栈存放:局部变量,操作数栈,动态链接、方法出口等信息,返回结果。该区更关注的是程序方法的执行。

局部变量表

栈帧中,由一个局部变量表存储数据。局部变量表中存储了基本数据类型(boolean、byte、char、short、int、float、long、double)的局部变量(包括参数)、和对象的引用(String、数组、对象等),

但是不存储对象的内容。局部变量表所需的内存空间在编译期间完成分配,在方法运行期间不会改变局部变量表的大小。

线程私有,生命周期和线程,每个方法在执行的同时都会创建一个 栈帧用于存储局部变量表,操作数栈,动态链接,方法出口等信息。方法的执行就对应着栈帧在虚拟机栈中入栈和出栈的过程;

以栈帧的方式存储方法调用的过程;

变量出了作用域就会自动释放;

通过-Xss选项设置栈内存的大小(这个参数是设定单个线程的栈空间)。

栈中可能出现哪些异常?

StackOverflowError:栈溢出错误

栈的内存要远远小于堆内存,栈的深度是有限制的,栈决定了函数调用的深度。这也是慎用递归调用的原因。递归调用时,每次调用方法都会创建栈帧并压栈。当调用一定次数之后,如果递归没有及时跳出,所需栈的大小已经超过了虚拟机运行配置的最大栈参数,就会抛出StackOverflowError

如果一个线程在计算时所需要用到栈大小 > 配置允许最大的栈大小,那么Java虚拟机将抛出 StackOverflowError

OutOfMemoryError:内存不足

栈进行动态扩展时如果无法申请到足够内存,会抛出 OutOfMemoryError 异常。

StackOverflowError 异常。

===本地方法栈 native Method stack

与虚拟机栈的作用是一样的,只不过虚拟机栈是服务 Java 方法的,而本地方法栈是为虚拟机调用 Native 方法服务的;

本地方法栈保存的是native方法的信息,当一个JVM创建的线程调用native方法后,JVM不再为其在虚拟机栈中创建栈帧,JVM只是简单地动态链接并直接调用native方法;

===程序计数器 Program Counter Register

当前线程所执行的字节码的行号指示器,字节码解析器的工作是通过改变这个计数器的值,来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能,都需要依赖这个计数器来完成;较小的内存空间;各线程之间独立存储,互不影响;

程序计数器(Program Counter Register)是一块较小的内存空间,可以看作是当前线程所执行字节码的行号指示器,指向下一个将要执行的指令代码,由执行引擎来读取下一条指令。

更确切的说,一个线程的执行,是通过字节码解释器改变当前线程的计数器的值,来获取下一条需要执行的字节码指令,从而确保线程的正确执行。

为了确保线程切换后(上下文切换)能恢复到正确的执行位置,每个线程都有一个独立的程序计数器,各个线程的计数器互不影响,独立存储。也就是说程序计数器是线程私有的内存。

如果线程执行 Java 方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果执行的是 Native 方法,计数器值为Undefined。

程序计数器不会发生内存溢出(OutOfMemoryError即OOM)问题。

=本地接口 (Native Interface)

Native Interface(本地接口):与native libraries交互,是其它编程语言交互的接口。

JNI实现机制

说到JNI都不陌生,它的全称:Java Native Interface,即 Java本地接口。

JNI不仅仅是Android特有的,它是属于Java平台的,它允许在Java虚拟机内运行的java代码与其他编程语言(如c, c++和汇编语言)编写的程序和库进行交互。

JNI调用姿势:Java —> JNI —> C/C++(SO库)

在Android平台中,使用JNI封装了跟硬件相关的操作,从而可以通过Java调用相关JNI模块,以达到对硬件的调用。

=本地方法库 (native method libraries)

=类加载系统 (Class loader)(子系统)

Class loader(类装载):根据给定的全限定名类名(如:java.lang.Object)来装载class文件到Runtime data area中的method area。

前置:(java文件通过编译器变成了.class文件,接下来类加载器又将这些.class文件加载到JVM中。)

类加载:类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个 java.lang.Class对象,用来封装类在方法区内的数据结构。

=执行引擎 (Execution engine)(子系统)

Execution engine(执行引擎):执行classes中的指令。

==即时编译器 (jitcompiler)

==垃圾回收器 (garbage collector)

直接内存:不是虚拟机运行时数据区的一部分,也不是java虚拟机规范中定义的内存区域;

1)如果使用了NIO,这块区域会被频繁使用,在java堆内可以用directByteBuffer对象直接引用并操作;

2)这块内存不受java堆大小限制,但受本机总内存的限制,可以通过MaxDirectMemorySize来设置(默认与堆内存最大值一样),所以也会出现OOM异常;

2,Java程序运行机制详细说明

Java程序运行机制步骤

流程:

首先通过编译器把 Java 代码转换成字节码,

类加载器(ClassLoader)再把字节码加载到内存中,将其放在运行时数据区(Runtime data area)的方法区内,

而字节码文件只是 JVM 的一套指令集规范,并不能直接交给底层操作系统去执行,

因此需要特定的命令解析器执行引擎(Execution Engine),将字节码翻译成底层系统指令,

再交由 CPU 去执行,而这个过程中需要调用其他语言的本地库接口(Native Interface)来实现整个程序的功能。

流程:

首先利用IDE集成开发工具编写Java源代码,源文件的后缀为.java;

再利用编译器(javac命令)将源代码编译成字节码文件,字节码文件的后缀名为.class;

运行字节码的工作是由解释器(java命令)来完成的 java命令来执行class字节码

java命令执行过程中,会先启动虚拟机,加载TestCode类信息到内存,然后由执行引擎执行其main方法。

3,jvm调优

工具:jconsole jvisualvm

JVM内存参数设定

-Xms 初始堆内存大小

-Xmx 最大堆内存大小

-Xss 单个线程栈大小

-XX:NewSize 初始新生代堆大小

-XX:MaxNewSize 新生代最大堆大小

-XX:PermSize 方法区初始大小(JDK1.7及以前)

-XX:MaxPermSize 方法区最大大小(JDK1.7及以前)

-XX:MetaspaceSize 元数据区初始值(JDK1.8)

-XX:MaxMetaspaceSize 元数据区最大值(JDK1.8)

参数设置示例

jdk1.7 windows设置tomcat的catalina.bat

set JAVA_OPTS=-Xms1024m -Xmx1024m -Xss1m -XX:PermSize=128m -XX:MaxPermSize=256m -XX:NewSize=256m -XX:MaxNewSize=256m

jdk1.8 windows设置tomcat的catalina.bat

set JAVA_OPTS=-Xms1024m -Xmx1024m -Xss1m -XX:MetaspaceSize=128m -XX:MAXMetaspaceSize=256m -XX:NewSize=256m -XX:MaxNewSize=256m

4,深拷贝和浅拷贝

浅拷贝(shallowCopy)只是增加了一个指针指向已存在的内存地址,

深拷贝(deepCopy)是增加了一个指针并且申请了一个新的内存,使这个增加的指针指向这个新的内存,

使用深拷贝的情况下,释放内存的时候不会因为出现浅拷贝时释放同一个内存的错误。

浅复制:仅仅是指向被复制的内存地址,如果原地址发生改变,那么浅复制出来的对象也会相应的改变。

深复制:在计算机中开辟一块新的内存地址用于存放复制的对象。

5,HotSpot虚拟机对象探秘

Header 解释

使用new关键字 调用了构造函数

使用Class的newInstance方法 调用了构造函数

使用Constructor类的newInstance方法 调用了构造函数

使用clone方法 没有调用构造函数

使用反序列化 没有调用构造函数

6,为对象分配内存

类加载完成后,接着会在Java堆中划分一块内存分配给对象。内存分配根据Java堆是否规整,有两种方式:

指针碰撞:如果Java堆的内存是规整,即所有用过的内存放在一边,而空闲的的放在另一边。分配内存时将位于中间的指针指示器向空闲的内存移动一段与对象大小相等的距离,这样便完成分配内存工作。

空闲列表:如果Java堆的内存不是规整的,则需要由虚拟机维护一个列表来记录那些内存是可用的,这样在分配的时候可以从列表中查询到足够大的内存分配给对象,并在分配后更新列表记录。

选择哪种分配方式是由 Java 堆是否规整来决定的,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。

7,处理并发安全问题

对象的创建在虚拟机中是一个非常频繁的行为,哪怕只是修改一个指针所指向的位置,在并发情况下也是不安全的,可能出现正在给对象 A 分配内存,指针还没来得及修改,对象 B 又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案:

同步处理:对分配内存空间的动作进行同步处理(采用 CAS + 失败重试来保障更新操作的原子性);

本地线程分配缓冲(Thread Local Allocation Buffer, TLAB):把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在 Java 堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer, TLAB)。哪个线程要分配内存,就在哪个线程的 TLAB 上分配。只有 TLAB 用完并分配新的 TLAB 时,才需要同步锁。通过-XX:+/-UserTLAB参数来设定虚拟机是否使用TLAB。

8,对象的访问定位

Java程序需要通过 JVM 栈上的引用访问堆中的具体对象。对象的访问方式取决于 JVM 虚拟机的实现。目前主流的访问方式有 句柄 和 直接指针 两种方式

指针: 指向对象,代表一个对象在内存中的起始地址。

直接指针

如果使用直接指针访问,引用 中存储的直接就是对象地址,那么Java堆对象内部的布局中就必须考虑如何放置访问类型数据的相关信息。

优势:速度更快,节省了一次指针定位的时间开销。由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是非常可观的执行成本。HotSpot 中采用的就是这种方式。

句柄: 可以理解为指向指针的指针,维护着对象的指针。句柄不直接指向对象,而是指向对象的指针(句柄不发生变化,指向固定内存地址),再由对象的指针指向对象的真实内存地址。

句柄访问

Java堆中划分出一块内存来作为句柄池,引用中存储对象的句柄地址,而句柄中包含了对象实例数据与对象类型数据各自的具体地址信息

优势:引用中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而引用本身不需要修改。

9,内存溢出异常

Java会存在内存泄漏吗?请简单描述

内存泄漏是指不再被使用的对象或者变量一直被占据在内存中。理论上来说,Java是有GC垃圾回收机制的,也就是说,不再被使用的对象,会被GC自动回收掉,自动从内存中清除。

但是,即使这样,Java也还是存在着内存泄漏的情况,java导致内存泄露的原因很明确:

长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。

10,JVM中的永久代中会发生垃圾回收吗

垃圾回收不会发生在永久代,如果永久代满了或者是超过了临界值,会触发完全垃圾回收(Full GC)。如果你仔细查看垃圾收集器的输出信息,就会发现永久代也是被回收的。这就是为什么正确的永久代大小对避免Full GC是非常重要的原因。请参考下Java8:从永久代到元数据区

(译者注:Java8中已经移除了永久代,新加了一个叫做元数据区的native内存区)

11,垃圾收集器

简述Java垃圾回收机制

在java中,程序员是不需要显示的去释放一个对象的内存的,而是由虚拟机自行执行。在JVM中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,扫面那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。

12,GC是什么?为什么要GC

GC 是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java 提供的 GC 功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java 语言没有提供释放已分配内存的显示操作方法。

13,垃圾回收的优点和原理。并考虑2种回收机制

java语言最显著的特点就是引入了垃圾回收机制,它使java程序员在编写程序时不再考虑内存管理的问题。由于有这个垃圾回收机制,java中的对象不再有“作用域”的概念,只有引用的对象才有“作用域”。垃圾回收机制有效的防止了内存泄露,可以有效的使用可使用的内存。

垃圾回收器通常作为一个单独的低级别的线程运行,在不可预知的情况下对内存堆中已经死亡的或很长时间没有用过的对象进行清除和回收。程序员不能实时的对某个对象或所有对象调用垃圾回收器进行垃圾回收。

垃圾回收有分代复制垃圾回收、标记垃圾回收、增量垃圾回收。

14,垃圾回收器的基本原理是什么?垃圾回收器可以马上回收内存吗?有什么办法主动通知虚拟机进行垃圾回收?

对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。

通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的"。当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。

可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。

15,Java 中都有哪些引用类型?

强引用:发生 gc 的时候不会被回收。

软引用:有用但不是必须的对象,在发生内存溢出之前会被回收。

弱引用:有用但不是必须的对象,在下一次GC时会被回收。

虚引用(幽灵引用/幻影引用):无法通过虚引用获得对象,用 PhantomReference 实现虚引用,虚引用的用途是在 gc 时返回一个通知。

16,在Java中,对象什么时候可以被垃圾回收,怎么判断对象是否可以被回收?

垃圾收集器在做垃圾回收的时候,首先需要判定的就是哪些内存是需要被回收的,哪些对象是「存活」的,是不可以被回收的;哪些对象已经「死掉」了,需要被回收。

一般有两种方法来判断 垃圾判断算法:

引用计数器法:为每个对象创建一个引用计数,有对象引用时计数器 +1,引用被释放时计数 -1,当计数器为 0 时就可以被回收。它有一个缺点不能解决循环引用的问题;

优点:引用计数法实现起来比较简单,对程序不被长时间打断的实时环境比较有利。

缺点:需要额外的空间来存储计数器,难以检测出对象之间的循环引用。

可达性分析算法:从 GC Roots 开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是可以被回收的。

优点:可以解决循环引用的问题,不需要占用额外的空间

缺点:多线程场景下,其他线程可能会更新已经访问过的对象的引用

17,说一下 JVM 有哪些垃圾回收算法?

标记-清除算法:标记无用对象,然后进行清除回收。缺点:效率不高,无法清除垃圾碎片。

复制算法:按照容量划分二个大小相等的内存区域,当一块用完的时候将活着的对象复制到另一块上,然后再把已使用的内存空间一次清理掉。缺点:内存使用率不高,只有原来的一半。

优点:标记阶段和复制阶段可以同时进行;每次只对一块内存进行回收,运行高效;只需移动栈顶指针,按顺序分配内存即可,实现简单;内存回收时不用考虑内存碎片的出现。

缺点:需要一块能容纳下所有存活对象的额外的内存空间。因此,可一次性分配的最大内存缩小了一半。

标记-整理算法:标记无用对象,让所有存活的对象都向一端移动,然后直接清除掉端边界以外的内存。

优点:经过整理之后,新对象的分配只需要通过指针碰撞便能完成,比较简单;使用这种方法,空闲区域的位置是始终可知的,也不会再有碎片的问题了。

缺点:GC 暂停的时间会增长,因为你需要将所有的对象都拷贝到一个新的地方,还得更新它们的引用地址。

分代算法:根据对象存活周期的不同将内存划分为几块,一般是新生代和老年代,新生代基本采用复制算法,老年代采用标记整理算法。

分代收集算法

当前商业虚拟机都采用分代收集的垃圾收集算法。分代收集算法,顾名思义是根据对象的存活周期将内存划分为几块。一般包括年轻代、老年代 和 永久代

18,说一下 JVM 有哪些垃圾回收器?

如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。下图展示了7种作用于不同分代的收集器,其中用于回收新生代的收集器包括Serial、PraNew、Parallel Scavenge,回收老年代的收集器包括Serial Old、Parallel Old、CMS,

还有用于回收整个Java堆的G1收集器。不同收集器之间的连线表示它们可以搭配使用。

Serial收集器(复制算法): 新生代单线程收集器,标记和清理都是单线程,优点是简单高效;

ParNew收集器 (复制算法): 新生代收并行集器,实际上是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现;

Parallel Scavenge收集器 (复制算法): 新生代并行收集器,追求高吞吐量,高效利用 CPU。吞吐量 = 用户线程时间/(用户线程时间+GC线程时间),如虚拟机总运行了 100 分钟,其中垃圾收集花掉 1 分钟,那吞吐量就是99%。高吞吐量可以高效率的利用CPU时间,尽快完成程序的运算任务,适合后台应用等对交互相应要求不高的场景;

Serial Old收集器 (标记-整理算法): Serial Old 是 Serial 收集器的老年代版本,单线程收集器,采用“标记-整理”算法。这个收集器的主要意义也是在于给 Client 模式下的虚拟机使用。

Parallel Old收集器 (标记-整理算法): 老年代并行收集器,吞吐量优先,Parallel Scavenge收集器的老年代版本;

CMS(Concurrent Mark Sweep)收集器(标记-清除算法): 老年代并行收集器,以获取最短回收停顿时间为目标的收集器,具有高并发、低停顿的特点,追求最短GC回收停顿时间。

G1(Garbage First)收集器 (标记-整理算法): Java堆并行收集器,G1收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。此外,G1收集器不同于之前的收集器的一个重要特点是:G1回收的范围是整个Java堆(包括新生代,老年代),而前六种收集器回收的范围仅限于新生代或老年代。

19,详细介绍一下 CMS 垃圾回收器?

CMS 是英文 Concurrent Mark-Sweep 的简称,是以牺牲吞吐量为代价来获得最短回收停顿时间的垃圾回收器。对于要求服务器响应速度的应用上,这种垃圾回收器非常适合。在启动 JVM 的参数加上“-XX:+UseConcMarkSweepGC”来指定使用 CMS 垃圾回收器。

CMS 使用的是标记-清除的算法实现的,所以在 gc 的时候回产生大量的内存碎片,当剩余内存不能满足程序运行要求时,系统将会出现 Concurrent Mode Failure,临时 CMS 会采用 Serial Old 回收器进行垃圾清除,此时的性能将会被降低。

CMS收集器

CMS(Concurrent Mark Swee)收集器是一种以获取最短回收停顿时间为目标的收集器。CMS 收集器仅作用于老年代的收集,采用“标记-清除”算法,它的运作过程分为 4 个步骤:

初始标记(CMS initial mark)

并发标记(CMS concurrent mark)

重新标记(CMS remark)

并发清除(CMS concurrent sweep)

其中,初始标记、重新标记这两个步骤仍然需要 Stop-the-world。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始阶段稍长一些,但远比并发标记的时间短。

CMS 以流水线方式拆分了收集周期,将耗时长的操作单元保持与应用线程并发执行。只将那些必需 STW 才能执行的操作单元单独拎出来,控制这些单元在恰当的时机运行,并能保证仅需短暂的时间就可以完成。这样,在整个收集周期内,只有两次短暂的暂停(初始标记和重新标记),达到了近似并发的目的。

CMS 收集器优点:并发收集,低停顿。

CMS 收集器缺点:

CMS 收集器对 CPU 资源非常敏感;

CMS 收集器无法处理浮动垃圾;

CMS 收集器是基于“标记-清除”算法,该算法的缺点都有。

CMS 收集器之所以能够做到并发,根本原因在于采用基于“标记-清除”的算法并对算法过程进行了细粒度的分解。前面已经介绍过“标记-清除”算法将产生大量的内存碎片这对新生代来说是难以接受的,因此新生代的收集器并未提供 CMS 版本。

20,G1 收集器

G1(Garbage First)重新定义了堆空间,打破了原有的分代模型,将堆划分为一个个区域。这么做的目的是在进行收集时不必在全堆范围内进行,这是它最显著的特点。

区域划分的好处就是带来了停顿时间可预测的收集模型:用户可以指定收集操作在多长时间内完成,即 G1 提供了接近实时的收集特性。G1 与 CMS 的特征对比如下:

G1 具备如下特点:

并行与并发:G1 能充分利用多 CPU、多核环境下的硬件优势,使用多个 CPU 来缩短 Stop-the-world 停顿的时间,部分其他收集器原来需要停顿 Java 线程执行的 GC 操作,G1 收集器仍然可以通过并发的方式让 Java 程序继续运行。

分代收集:打破了原有的分代模型,将堆划分为一个个区域。

空间整合:与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的。但无论如何,这两种算法都意味着 G1 运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次 GC。

可预测的停顿:这是 G1 相对于 CMS 的一个优势,降低停顿时间是 G1 和 CMS 共同的关注点。

在 G1 之前的其他收集器进行收集的范围都是整个新生代或者老年代,而 G1 不再是这样。在堆的结构设计时,G1 打破了以往将收集范围固定在新生代或老年代的模式,G1 将堆分成许多相同大小的区域单元,每个单元称为 Region,Region 是一块地址连续的内存空间,

堆内存会被切分成为很多个固定大小的 Region,每个是连续范围的虚拟内存。堆内存中一个 Region 的大小可以通过-XX:G1HeapRegionSize参数指定,其区间最小为 1M、最大为 32M,默认把堆内存按照 2048 份均分。

每个 Region 被标记了 E、S、O 和 H,这些区域在逻辑上被映射为 Eden,Survivor 和老年代。存活的对象从一个区域转移(即复制或移动)到另一个区域,区域被设计为并行收集垃圾,可能会暂停所有应用线程。

如上图所示,区域可以分配到 Eden,Survivor 和老年代。此外,还有第四种类型,被称为巨型区域(Humongous Region)。Humongous 区域是为了那些存储超过 50% 标准 Region 大小的对象而设计的,它用来专门存放巨型对象。如果一个 H 区装不下一个巨型对象,那么 G1 会寻找连续的 H 分区来存储。为了能找到连续的 H 区,有时候不得不启动 Full GC。

G1 收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个 Java 堆中进行全区域的垃圾收集。G1 会通过一个合理的计算模型,计算出每个 Region 的收集成本并量化,这样一来,收集器在给定了“停顿”时间限制的情况下,总是能选择一组恰当的 Region 作为收集目标,让其收集开销满足这个限制条件,以此达到实时收集的目的。

对于打算从 CMS 或者 ParallelOld 收集器迁移过来的应用,按照官方的建议,如果发现符合如下特征,可以考虑更换成 G1 收集器以追求更佳性能:

实时数据占用了超过半数的堆空间;

对象分配率或“晋升”的速度变化明显;

期望消除耗时较长的GC或停顿(超过 0.5 ~ 1 秒)。

G1 收集的运作过程大致如下:

初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改 TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的 Region 中创建新对象,这阶段需要停顿线程,但耗时很短。

并发标记(Concurrent Marking):是从GC Roots开始堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。

最终标记(Final Marking):是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中,这阶段需要停顿线程,但是可并行执行。

筛选回收(Live Data Counting and Evacuation):首先对各个 Region 的回收价值和成本进行排序,根据用户所期望的 GC 停顿时间来制定回收计划。这个阶段也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。

G1 的 GC 模式可以分为两种,分别为:

Young GC:在分配一般对象(非巨型对象)时,当所有 Eden 区域使用达到最大阀值并且无法申请足够内存时,会触发一次 YoungGC。每次 Young GC 会回收所有 Eden 以及 Survivor 区,并且将存活对象复制到 Old 区以及另一部分的 Survivor 区。

Mixed GC:当越来越多的对象晋升到老年代时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即 Mixed GC,该算法并不是一个 Old GC,除了回收整个新生代,还会回收一部分的老年代,这里需要注意:是一部分老年代,而不是全部老年代,可以选择哪些 Old 区域进行收集,从而可以对垃圾回收的耗时时间进行控制。G1 没有 Full GC概念,需要 Full GC 时,调用 Serial Old GC 进行全堆扫描。

21,新生代垃圾回收器和老年代垃圾回收器都有哪些?有什么区别?

新生代回收器:Serial、ParNew、Parallel Scavenge

老年代回收器:Serial Old、Parallel Old、CMS

整堆回收器:G1

新生代垃圾回收器一般采用的是复制算法,复制算法的优点是效率高,缺点是内存利用率低;老年代回收器一般采用的是标记-整理的算法进行垃圾回收。

22,简述分代垃圾回收器是怎么工作的?

分代回收器有两个分区:老生代和新生代,新生代默认的空间占比总空间的 1/3,老生代的默认占比是 2/3。

新生代使用的是复制算法,新生代里有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1,它的执行流程如下:

把 Eden + From Survivor 存活的对象放入 To Survivor 区;

清空 Eden 和 From Survivor 分区;

From Survivor 和 To Survivor 分区交换,From Survivor 变 To Survivor,To Survivor 变 From Survivor。

每次在 From Survivor 到 To Survivor 移动时都存活的对象,年龄就 +1,当年龄到达 15(默认配置是 15)时,升级为老生代。大对象也会直接进入老生代。

老生代当空间占用到达某个值之后就会触发全局垃圾收回,一般使用标记整理的执行算法。以上这些循环往复就构成了整个分代垃圾回收的整体执行流程。

23,内存分配策略

简述java内存分配与回收策率以及Minor GC和Major GC

所谓自动内存管理,最终要解决的也就是内存分配和内存回收两个问题。前面我们介绍了内存回收,这里我们再来聊聊内存分配。

对象的内存分配通常是在 Java 堆上分配(随着虚拟机优化技术的诞生,某些场景下也会在栈上分配,后面会详细介绍),对象主要分配在新生代的 Eden 区,如果启动了本地线程缓冲,将按照线程优先在 TLAB 上分配。少数情况下也会直接在老年代上分配。总的来说分配规则不是百分百固定的,其细节取决于哪一种垃圾收集器组合以及虚拟机相关参数有关,但是虚拟机对于内存的分配还是会遵循以下几种「普世」规则:

=对象优先在 Eden 区分配

多数情况,对象都在新生代 Eden 区分配。当 Eden 区分配没有足够的空间进行分配时,虚拟机将会发起一次 Minor GC。如果本次 GC 后还是没有足够的空间,则将启用分配担保机制在老年代中分配内存。

这里我们提到 Minor GC,如果你仔细观察过 GC 日常,通常我们还能从日志中发现 Major GC/Full GC。

Minor GC 是指发生在新生代的 GC,因为 Java 对象大多都是朝生夕死,所有 Minor GC 非常频繁,一般回收速度也非常快;

Major GC/Full GC 是指发生在老年代的 GC,出现了 Major GC 通常会伴随至少一次 Minor GC。Major GC 的速度通常会比 Minor GC 慢 10 倍以上。

=大对象直接进入老年代

所谓大对象是指需要大量连续内存空间的对象,频繁出现大对象是致命的,会导致在内存还有不少空间的情况下提前触发 GC 以获取足够的连续空间来安置新对象。

前面我们介绍过新生代使用的是标记-清除算法来处理垃圾回收的,如果大对象直接在新生代分配就会导致 Eden 区和两个 Survivor 区之间发生大量的内存复制。因此对于大对象都会直接在老年代进行分配。

=长期存活对象将进入老年代

虚拟机采用分代收集的思想来管理内存,那么内存回收时就必须判断哪些对象应该放在新生代,哪些对象应该放在老年代。因此虚拟机给每个对象定义了一个对象年龄的计数器,如果对象在 Eden 区出生,并且能够被 Survivor 容纳,将被移动到 Survivor 空间中,这时设置对象年龄为 1。对象在 Survivor 区中每「熬过」一次 Minor GC 年龄就加 1,当年龄达到一定程度(默认 15) 就会被晋升到老年代。

24,虚拟机类加载机制

简述java类加载机制?

虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,解析和初始化,最终形成可以被虚拟机直接使用的java类型。

描述一下JVM加载Class文件的原理机制

Java中的所有类,都需要由类加载器装载到JVM中才能运行。类加载器本身也是一个类,而它的工作就是把class文件从硬盘读取到内存中。在写程序的时候,我们几乎不需要关心类的加载,因为这些都是隐式装载的,除非我们有特殊的用法,像是反射,就需要显式的加载所需要的类。

类装载方式,有两种 :

1.隐式装载, 程序在运行过程中当碰到通过new 等方式生成对象时,隐式调用类装载器加载对应的类到jvm中,

2.显式装载, 通过class.forname()等方法,显式加载需要的类

Java类的加载是动态的,它并不会一次性将所有类全部加载后再运行,而是保证程序运行的基础类(像是基类)完全加载到jvm中,至于其他类,则在需要的时候才加载。这当然就是为了节省内存开销。

25,什么是类加载器,类加载器有哪些?

系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。

用户自定义类加载器,通过继承 java.lang.ClassLoader类的方式实现。

26,说一下类装载的执行过程?

类装载分为以下 5 个步骤:

加载:根据查找路径找到相应的 class 文件然后导入;

验证:检查加载的 class 文件的正确性;

准备:给类中的静态变量分配内存空间;

解析:虚拟机将常量池中的符号引用替换成直接引用的过程。符号引用就理解为一个标示,而在直接引用直接指向内存中的地址;

初始化:对静态变量和静态代码块执行初始化工作。

27,什么是双亲委派模型?

在介绍双亲委派模型之前先说下类加载器。对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立在 JVM 中的唯一性,每一个类加载器,都有一个独立的类名称空间。类加载器就是根据指定全限定名称将 class 文件加载到 JVM 内存,然后再转化为 class 对象。

实现通过类的权限定名获取该类的二进制字节流的代码块叫做类加载器。

主要有一下四种类加载器

类加载器分类:

启动类加载器(Bootstrap ClassLoader)用来加载java核心类库,无法被java程序直接引用,是虚拟机自身的一部分;用来加载Java_HOME/lib/目录中的,或者被 -Xbootclasspath 参数所指定的路径中并且被虚拟机识别的类库;

其他类加载器:

扩展类加载器(Extension ClassLoader)它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类;负责加载\lib\ext目录或Java. ext. dirs系统变量指定的路径中的所有类库;

系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。

应用程序类加载器(Application ClassLoader)。负责加载用户类路径(classpath)上的指定类库,我们可以直接使用这个类加载器。一般情况,如果我们没有自定义类加载器默认就是用这个加载器。

用户自定义类加载器,通过继承 java.lang.ClassLoader类的方式实现。

双亲委派模型:如果一个类加载器收到了类加载的请求,它首先不会自己去加载这个类,而是把这个请求委派给父类加载器去完成,每一层的类加载器都是如此,这样所有的加载请求都会被传送到顶层的启动类加载器中,只有当父加载无法完成加载请求(它的搜索范围中没找到所需的类)时,子加载器才会尝试去加载类。

当一个类收到了类加载请求时,不会自己先去加载这个类,而是将其委派给父类,由父类去加载,如果此时父类不能加载,反馈给子类,由子类去完成类的加载。