天天看点

Java设计模式:七大原则一、设计模式的目的二、七大原则

一、设计模式的目的

  • 1、代码重用性 (即:相同功能的代码,不用多次编写)
  • 2、可读性(即:编程规范性,便于其他程序员的阅读和理解)
  • 3、可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
  • 4、可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
  • 5、使程序呈现高内聚,低耦合的特性

二、七大原则

  1. 单一职责原则
  2. 接口隔离原则
  3. 依赖倒转(倒置)原则
  4. 里氏替换原则
  5. 开闭原则
  6. 迪米特法则
  7. 合成复用原则

1、单一职责原则

  • 方式一
public class SingleResponsibility1 {

    public static void main(String[] args) {
        Vehicle vehicle = new Vehicle();
        vehicle.run("摩托车");
        vehicle.run("汽车");
        vehicle.run("飞机");
    }
}

/**
 * 交通工具类
 * 方式一:
 * 1、run 方法中,违反了单一职责原则
 * 2、解决方案:根据交通工具运行方法不同,分解成不同的类,请看方式二
 */
class Vehicle {

    public void run(String vehicle) {
        System.out.println(vehicle + " 在公路上运行");
    }
}
           
  • 方式二
package com.wsh.test.designpattern.singleresponsibility;

/**
 * class
 *
 * @author wsh
 * @date 2019-07-06 16:11
 */
public class SingleResponsibility2 {

    public static void main(String[] args) {
        RoadVehicle roadVehicle = new RoadVehicle();
        roadVehicle.run("汽车");
        AirVehicle airVehicle = new AirVehicle();
        airVehicle.run("飞机");
        WaterVehicle waterVehicle = new WaterVehicle();
        waterVehicle.run("轮船");
    }
}

//方案二:
//1、遵守单一职责原则
//2、但改动很大,即将类分解,同时还要修改客户端
//3、改进:直接修改Vehicle 类, 改动代码较少,请看方式三

/**
 * 公路上运行的交通工具
 */
class RoadVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在公路上运行");
    }
}

/**
 * 在天空中运行的交通工具
 */
class AirVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在天空上运行");
    }
}

/**
 * 在水中运行的交通工具
 */
class WaterVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在水中上运行");
    }
}
           
  • 方式三
package com.wsh.test.designpattern.singleresponsibility;

/**
 * class
 *
 * @author wsh
 * @date 2019-07-06 16:19
 */
public class SingleResponsibility3 {

    public static void main(String[] args) {
        Vehicle2 vehicle2 = new Vehicle2();
        vehicle2.runRoad("摩托车");
        vehicle2.runAir("飞机");
        vehicle2.runWater("轮船");
    }
}

/**
 * 交通工具类
 * 方式三:
 * 1、这种修改方法没有对原来的类做大的改动,只是增加方法
 * 2、这里在类的级别上没有遵守单一职责原则,但在方法级别上遵守了
 */
class Vehicle2 {

    public void runRoad(String vehicle) {
        System.out.println(vehicle + " 在公路上运行");
    }

    public void runAir(String vehicle) {
        System.out.println(vehicle + " 在天空上运行");
    }

    public void runWater(String vehicle) {
        System.out.println(vehicle + " 在水中上运行");
    }
}
           
  • 总结:
  1. 降低类的复杂度,一个类只负责一项职责。
  2. 提高类的可读性,可维护性
  3. 降低变更引起的风险
  4. 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则

2、接口隔离原则(Interface Segregation Principle)

客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上

方式一 : 不使用隔离原则

Java设计模式:七大原则一、设计模式的目的二、七大原则

方式二 : 使用接口隔离原则

Java设计模式:七大原则一、设计模式的目的二、七大原则

3、依赖倒转原则

依赖倒转原则(Dependence Inversion Principle)是指:

  1. 高层模块不应该依赖低层模块,二者都应该依赖其抽象
  2. 抽象不应该依赖细节,细节应该依赖抽象
  3. 依赖倒转(倒置)的中心思想是面向接口编程
  4. 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架 构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
  5. 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成

方式一 : 未使用依赖倒转

package com.wsh.pattern.principle.inversion;

/**
 * class
 *
 * @author wsh
 * @date 2019-07-07 18:09
 */
public class DependencyInversion {

    public static void main(String[] args) {
        Person person = new Person();
        person.receive(new Email());
    }
}

class Email {
    public String getInfo() {
        return "电子邮件信息:email";
    }
}

/**
 * 方式一:
 * 1、比较简单
 * 2、如果获取的对象是微信,短信或者其他类型的信息等等,则要增加类,同时Persion也要增加相应的接收方法
 * 3、解决思路:引入一个抽象接口IReceiver 表示接收者,Person类和IReceiver发生依赖
 * 使用依赖倒转原则
 */
class Person {

    public void receive(Email email) {
        System.out.println(email.getInfo());
    }
}
           

方式二 : 使用依赖倒转原则

package com.wsh.pattern.principle.inversion.improve;

/**
 * class
 *
 * @author wsh
 * @date 2019-07-07 18:09
 */
public class DependencyInversion {

    public static void main(String[] args) {
        Person person = new Person();
        person.receive(new Email());
        person.receive(new Weixin());
    }
}

interface IReceiver {
    public String getInfo();
}

class Email implements IReceiver{

    @Override
    public String getInfo() {
        return "电子邮件信息:email";
    }
}

class Weixin implements IReceiver{

    @Override
    public String getInfo() {
        return "微信 信息:hello";
    }
}

/**
 * 方式二:
 * 使用依赖倒转原则
 */
class Person {

    public void receive(IReceiver receiver) {
        System.out.println(receiver.getInfo());
    }
}
           

总结 :

  • 依赖关系传递的三种方式
  1. 接口传递
//方式1: 通过接口传递实现依赖
//开关的接口
interface IOpenAndClose {
    public void open(ITV tv); //抽象方法,接收接口
}

interface ITV { //ITV接口
    public void play();
}

// 实现接口
class OpenAndClose implements IOpenAndClose {
    public void open(ITV tv) {
        tv.play();
    }
}
           
  1. 构造方法传递
//方式2:通过构造方法依赖传递
interface IOpenAndClose {
    public void open(); //抽象方法
}

interface ITV { //ITV接口
    public void play();
}

class OpenAndClose implements IOpenAndClose {
    public ITV tv;

    public OpenAndClose(ITV tv) {
        this.tv = tv;
    }

    public void open() {
        this.tv.play();
    }
}
           
  1. setter 方式传递
// 方式3 , 通过setter方法传递
interface IOpenAndClose {
    public void open(); // 抽象方法

    public void setTv(ITV tv);
}

interface ITV { // ITV接口
    public void play();
}

class OpenAndClose implements IOpenAndClose {
    private ITV tv;

    public void setTv(ITV tv) {
        this.tv = tv;
    }

    public void open() {
        this.tv.play();
    }
}
           
  • 依赖倒转原则的注意事项和细节
  1. 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好.
  2. 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展

    和优化

  3. 继承时遵循里氏替换原则

4、里约替换原则

4.1 OO 中的继承性的思考和说明

  1. 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有 的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
  2. 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低, 增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且 父类修改后,所有涉及到子类的功能都有可能产生故障
  3. 问题提出:在编程中,如何正确的使用继承? => 里氏替换原则

4.2 基本介绍

  1. 里氏替换原则(Liskov Substitution Principle)在1988年,由麻省理工学院的以为姓里的女士提出的。
  2. 如果对每个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都 代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地

    方必须能透明地使用其子类的对象。

  3. 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
  4. 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖来解决问题。

4.3 案例

代码:

public class Liskov {

    public static void main(String[] args) {
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
        System.out.println("1-8=" + b.func1(1, 8));// 1-8
        System.out.println("11+3+9=" + b.func2(11, 3));
    }

}

// A类
class A {
    // 返回两个数的差
    public int func1(int num1, int num2) {
        return num1 - num2;
    }
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
    //这里,重写了A类的方法, 可能是无意识
    public int func1(int a, int b) {
        return a + b;
    }

    public int func2(int a, int b) {
        return func1(a, b) + 9;
    }
}
           
  • 解决方法
  1. 我们发现原来运行正常的相减功能发生了错误。原因就是类B无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候
  2. 通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等 关系代替.

改进代码:

public class Liskov {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        //因为B类不再继承A类,因此调用者,不会再func1是求减法
        //调用完成的功能就会很明确
        System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
        System.out.println("1+8=" + b.func1(1, 8));// 1+8
        System.out.println("11+3+9=" + b.func2(11, 3));


        //使用组合仍然可以使用到A类相关方法
        System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3


    }

}

//创建一个更加基础的基类
class Base {
    //把更加基础的方法和成员写到Base类
}

// A类
class A extends Base {
    // 返回两个数的差
    public int func1(int num1, int num2) {
        return num1 - num2;
    }
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
    //如果B需要使用A类的方法,使用组合关系
    private A a = new A();

    //这里,重写了A类的方法, 可能是无意识
    public int func1(int a, int b) {
        return a + b;
    }

    public int func2(int a, int b) {
        return func1(a, b) + 9;
    }

    //我们仍然想使用A的方法
    public int func3(int a, int b) {
        return this.a.func1(a, b);
    }
}
           

5、开闭原则

  1. 开闭原则(OpenClosedPrinciple)是编程中最基础、最重要的设计原则
  2. 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
  3. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
  4. 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。

方式一: 违反开闭原则

public class Ocp {

    public static void main(String[] args) {
        //使用看看存在的问题
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
    }

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
    //接收Shape对象,然后根据type,来绘制不同的图形
    public void drawShape(Shape s) {
        if (s.m_type == 1)
            drawRectangle(s);
        else if (s.m_type == 2)
            drawCircle(s);
        else if (s.m_type == 3)
            drawTriangle(s);
    }

    //绘制矩形
    public void drawRectangle(Shape r) {
        System.out.println(" 绘制矩形 ");
    }

    //绘制圆形
    public void drawCircle(Shape r) {
        System.out.println(" 绘制圆形 ");
    }

    //绘制三角形
    public void drawTriangle(Shape r) {
        System.out.println(" 绘制三角形 ");
    }
}

//Shape类,基类
class Shape {
    int m_type;
}

class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }
}

class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
}

//新增画三角形
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
}
           

优缺点:

  1. 优点是比较好理解,简单易操作。
  2. 缺点是违反了设计模式的ocp原则,即对扩展开放(提供方),对修改关闭(使用方)。即当我们给类增加新功能的

    时候,尽量不修改代码,或者尽可能少修改代码.

  3. 比如我们这时要新增加一个图形种类三角形,我们需要做如下修改,修改的地方较多

方式二: 改进,使用开闭原则

public class Ocp {

    public static void main(String[] args) {
        //使用看看存在的问题
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
        graphicEditor.drawShape(new OtherGraphic());
    }

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
    //接收Shape对象,调用draw方法
    public void drawShape(Shape s) {
        s.draw();
    }


}

//Shape类,基类
abstract class Shape {
    int m_type;

    public abstract void draw();//抽象方法
}

class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制矩形 ");
    }
}

class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制圆形 ");
    }
}

//新增画三角形
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制三角形 ");
    }
}

//新增一个图形
class OtherGraphic extends Shape {
    OtherGraphic() {
        super.m_type = 4;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制其它图形 ");
    }
}
           

方式二分析:

把创建 Shape 类做成抽象类,并提供一个抽象的 draw 方法,让子类去实现即可,这样我们有新的图形 种类时,只需要让新的图形类继承 Shape,并实现 draw 方法即可,使用方的代码就不需要修 -> 满足了开闭原则

6、迪米特法则

6.1 简介

  1. 一个对象应该对其他对象保持最少的了解
  2. 类与类关系越密切,耦合度越大
  3. 迪米特法则(DemeterPrinciple)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
  4. 迪米特法则还有个更简单的定义:只与直接的朋友通信
  5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间 是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返 回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变 量的形式出现在类的内部。

6.2 应用实例

  1. 有一个学校,下属有各个学院和总部,现要求打印出学校总部员工ID和学院员工的id
  2. 编程实现上面的功能, 看代码演示
  3. 代码演示
//客户端
public class Demeter1 {

	public static void main(String[] args) {
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());
	}
}


//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
		//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
		//3. 违反了 迪米特法则 
		
		//获取到学院员工
		List<CollegeEmployee> list1 = sub.getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}

           

6.3 改进

  1. 前面设计的问题在于SchoolManager中,CollegeEmployee类并不是SchoolManager类的直接朋友(分析)
  2. 按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合
  3. 对代码按照迪米特法则进行改进
  4. 代码演示
//客户端
public class Demeter1 {

	public static void main(String[] args) {
		System.out.println("~~~使用迪米特法则的改进~~~");
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());

	}

}


//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
	
	//输出学院员工的信息
	public void printEmployee() {
		//获取到学院员工
		List<CollegeEmployee> list1 = getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
	}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 将输出学院的员工方法,封装到CollegeManager
		sub.printEmployee();
	
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}

           

6.4 注意事项

  1. 迪米特法则的核心是降低类之间的耦合
  2. 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系,并不是要求完全没有依赖关系

7、合成复用原则(Composite Reuse Principle)

尽量使用合成/聚合的方式,而不是使用继承

8、设计原则总结

  1. 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。 2) 针对接口编程,而不是针对实现编程。
  2. 为了交互对象之间的松耦合设计而努力