最近用上了GPU,但是呢,不是自己在用,得需要监视下使用状态吧,所以就有了gpustat。
1、安装gpustat
pip install gpustat
2、使用
gpustat -cpu
Options:
--color :
Force colored output (even when stdout is not a tty)
--no-color :
Suppress colored output
-u, --show-user :
Display username of the process owner
-c, --show-cmd :
Display the process name
-p, --show-pid :
Display PID of the process
-P, --show-power :
Display GPU power usage and/or limit (draw or draw,limit)
--watch, -i, --interval :
Run in watch mode (equivalent to watch gpustat) if given. Denotes interval between updates. (#41)
--json :
JSON Output (Experimental, #10)
Tips
To periodically watch, try
gpustat --watch
or
gpustat -i
(#41).
For older versions, one may use
watch --color -n1.0 gpustat --color
。
Running
nvidia-smi daemon
(root privilege required) will make the query much faster and use less CPU (#54).
The GPU ID (index) shown by
gpustat
(and
nvidia-smi
) is PCI BUS ID, while CUDA differently assigns the fastest GPU with the lowest ID by default. Therefore, in order to make CUDA and
gpustat
use same GPU index, configure the
CUDA_DEVICE_ORDER
environment variable to
PCI_BUS_ID
(before setting
CUDA_VISIBLE_DEVICES
for your CUDA program):
export CUDA_DEVICE_ORDER=PCI_BUS_ID
.
效果图:
