天天看点

basler 相机取图超时_Opencv打开basler相机——实现显示视频、保存图片、记录视频(Windows下)...

//定义是否保存图片

#define saveImages 0

//定义是否记录视频

#define recordVideo 0

// 加载OpenCV API

#include

#include

#include

//加载PYLON API.

#include

#include

#ifdef PYLON_WIN_BUILD

#include

#endif

//命名空间.

using namespace Pylon;

using namespace cv;

using namespace std;

//定义抓取的图像数

static const uint32_t c_countOfImagesToGrab = 800;

void main()

{

//Pylon自动初始化和终止

Pylon::PylonAutoInitTerm autoInitTerm;

try

{

//创建相机对象(以最先识别的相机)

CInstantCamera camera(CTlFactory::GetInstance().CreateFirstDevice());

// 打印相机的名称

std::cout << "Using device " << camera.GetDeviceInfo().GetModelName() << endl;

//获取相机节点映射以获得相机参数

GenApi::INodeMap& nodemap = camera.GetNodeMap();

//打开相机

camera.Open();

//获取相机成像宽度和高度

GenApi::CIntegerPtr width = nodemap.GetNode("Width");

GenApi::CIntegerPtr height = nodemap.GetNode("Height");

//设置相机最大缓冲区,默认为10

camera.MaxNumBuffer = 5;

// 新建pylon ImageFormatConverter对象.

CImageFormatConverter formatConverter;

//确定输出像素格式

formatConverter.OutputPixelFormat = PixelType_BGR8packed;

// 创建一个Pylonlmage后续将用来创建OpenCV images

CPylonImage pylonImage;

//声明一个整形变量用来计数抓取的图像,以及创建文件名索引

int grabbedlmages = 0;

// 新建一个OpenCV video creator对象.

VideoWriter cvVideoCreator;

//新建一个OpenCV image对象.

Mat openCvImage;

// 视频文件名

std::string videoFileName = "openCvVideo.avi";

// 定义视频帧大小

cv::Size frameSize = Size((int)width->GetValue(), (int)height->GetValue());

//设置视频编码类型和帧率,有三种选择

// 帧率必须小于等于相机成像帧率

cvVideoCreator.open(videoFileName, CV_FOURCC('M', 'J', 'P', 'G'), 24, frameSize, true);

//cvVideoCreator.open(videoFileName, CV_F0URCC('M','P',,4','2’), 20, frameSize, true);

//cvVideoCreator.open(videoFileName, CV_FOURCC('M', '3', 'P', 'G'), 20, frameSize, true);

// 开始抓取c_countOfImagesToGrab images.

//相机默认设置连续抓取模式

camera.StartGrabbing(c_countOfImagesToGrab, GrabStrategy_LatestImageOnly);

//抓取结果数据指针

CGrabResultPtr ptrGrabResult;

// 当c_countOfImagesToGrab images获取恢复成功时,Camera.StopGrabbing()

//被RetrieveResult()方法自动调用停止抓取

while (camera.IsGrabbing())

{

// 等待接收和恢复图像,超时时间设置为5000 ms.

camera.RetrieveResult(5000, ptrGrabResult, TimeoutHandling_ThrowException);

//如果图像抓取成功

if (ptrGrabResult->GrabSucceeded())

{

// 获取图像数据

cout << "SizeX: " << ptrGrabResult->GetWidth() << endl;

cout << "SizeY: " << ptrGrabResult->GetHeight() << endl;

//将抓取的缓冲数据转化成pylon image.

formatConverter.Convert(pylonImage, ptrGrabResult);

// 将 pylon image转成OpenCV image.

openCvImage = cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult->GetWidth(), CV_8UC3, (uint8_t *)pylonImage.GetBuffer());

//如果需要保存图片

if (saveImages)

{

std::ostringstream s;

// 按索引定义文件名存储图片

s << "save//image_" << grabbedlmages << ".jpg";

std::string imageName(s.str());

//保存OpenCV image.

imwrite(imageName, openCvImage);

grabbedlmages++;

}

//如果需要记录视频

if (recordVideo)

{

cvVideoCreator.write(openCvImage);

}

//新建OpenCV display window.

namedWindow("OpenCV Display Window", CV_WINDOW_NORMAL); // other options: CV_AUTOSIZE, CV_FREERATIO

//显示及时影像.

imshow("OpenCV Display Window", openCvImage);

// Define a timeout for customer's input in

// '0' means indefinite, i.e. the next image will be displayed after closing the window.

// '1' means live stream

waitKey(10);

}

}

}

catch (GenICam::GenericException &e)

{

// Error handling.

cerr << "An exception occurred." << endl

<< e.GetDescription() << endl;

}

system("pause");

return ;

}