天天看点

二叉树前序、中序、后序遍历的非递归写法

前序和中序遍历的非递归写法都比较好实现,后序遍历稍微复杂一些.

数据结构定义:

struct Node{

char c;

pNode lchild, rchild;

Node(char c, pNode lchild = nullptr, pNode rchild = nullptr) :

c(c), lchild(lchild), rchild(rchild) {}           

};

申请阿里云服务时,可以使用

2000元阿里云代金券

,阿里云官网领取网址:

https://dashi.aliyun.com/site/yun/youhui

二叉树形态:

A

/ \

B C

/ / \

D E F G

/ \

H I

前序遍历:

先根遍历,拿到一个节点的指针,先判断是否为空,不为空就先访问该结点,然后直接进栈,接着遍历左子树;为空则要从栈中弹出一个节点来,这个时候弹出的结点就是其父亲,然后访问其父亲的右子树,直到当前节点为空且栈为空时,算法结束.

阿里云服务器1核2G低至82元/年

,阿里云官活动网址:

https://dashi.aliyun.com/site/yun/aliyun

可以用20代金券,即102-20=82。

void preVisitStack(pNode root)

{

stack st;

pNode p = root;

while (p || !st.empty()) {

if (p) {
    visit(p);
    st.push(p);
    p = p->lchild;
} else {
    p = st.top();
    st.pop();
    p = p->rchild;
}           

}

cout << endl;

中序遍历:

和前序遍历一样,只不过在访问节点的时候顺序不一样,访问节点的时机是从栈中弹出元素时访问,如果从栈中弹出元素,就意味着当前节点父亲的左子树已经遍历完成,这时候访问父亲,就是中序遍历.

void midVisitStack(pNode root)

if (p) {
    st.push(p);
    p = p->lchild;
} else {
    p = st.top();
    visit(p);
    st.pop();
    p = p->rchild;
}           

后序遍历:

后续遍历就不一样了,首先肯定是先访问左子树,把父亲节点保存于栈中,问题是当元素从栈中弹出的时候,我们无法判断这个时候是该访问其右子树还是访问父亲节点,于是我们就需要一个标记,当访问左子树时我们把父亲节点的标记设为1,表示下一步如果弹出该节点,就访问其右子树;弹出一个节点时,我们要判断该节点的标记,如果是1,则访问其右子树,并把该节点的标记设置成2,表示下一步就访问该节点,然后把该节点继续入栈,如果是2,那么表示访问该节点,访问并且丢弃该节点.

为了不继续添加新的数据结构,我是用了STL中的pair来封装节点与标记.

void backVisitStack(pNode root)

stack > st;

if (p) {
    st.push(make_pair(p, 1));
    p = p->lchild;
} else {
    auto now = st.top();
    st.pop();
    if (now.second == 1) {
        st.push(make_pair(now.first, 2));
        p = now.first->rchild;
    } else
        visit(now.first);
}           

完整测试代码:

include

using namespace std;

typedef struct Node *pNode;

c(c), lchild(lchild), rchild(rchild) {}           

pNode build()

/*

A
   /  \
 B     C
/ \   / \           

D E F G

/ \
   H   I           

*/

pNode root = new Node('A');

root->lchild = new Node('B');

root->rchild = new Node('C');

root->lchild->lchild = new Node('D');

root->lchild->rchild = new Node('E');

root->rchild->lchild = new Node('F');

root->rchild->rchild = new Node('G');

root->rchild->lchild->lchild = new Node('H');

root->rchild->lchild->rchild = new Node('I');

return root;

void visit(pNode x)

cout << x->c << " ";

if (p) {
    visit(p);
    st.push(p);
    p = p->lchild;
} else {
    p = st.top();
    st.pop();
    p = p->rchild;
}           
if (p) {
    st.push(p);
    p = p->lchild;
} else {
    p = st.top();
    visit(p);
    st.pop();
    p = p->rchild;
}           
if (p) {
    st.push(make_pair(p, 1));
    p = p->lchild;
} else {
    auto now = st.top();
    st.pop();
    if (now.second == 1) {
        st.push(make_pair(now.first, 2));
        p = now.first->rchild;
    } else
        visit(now.first);
}           

int main()

pNode root = build();

preVisitStack(root);

midVisitStack(root);

backVisitStack(root);

测试结果:

依次为前序、中序、后序遍历的结果.

A B D E C F H I G

D B E A H F I C G

D E B H I F G C A