蚁狮算法是一种模仿自然界中蚁狮的捕猎机制的智能算法。蚁狮在沙子中,利用它的下颚挖出一个圆锥形的沙坑作为捕猎陷阱。一旦有猎物落陷阱,蚁狮便会将它拖入沙子底部并吃掉。通过与一些其他流行的智能算法比较,例如PSO、GA和杜鹃算法(CS),ALO显示出更好的收敛性、准确性和鲁棒性,但依然存在着收敛准确度低、易陷入局部最优解的缺陷。
(1)蚂蚁随机游走
首先假设由n个蚂蚁组成的蚂蚁种群Xant=(XA,1,XA,n,…,XA,N)T,XdA,n是第n个蚂蚁的第d个变量。蚂蚁移动的数学表达为

式中,XA,n(t)为迭代t次时第n个蚂蚁的位置;cums m为累积和;tm a x为最大迭代次数。
为防止个体越限,对其进行标准化处理,即
式中,min C(XdA,n)、max C(XdA,n)分别为第n只蚂蚁随机游走时的最小和最大步长;ud(t)、ld(t)分别为第t次迭代时第d个变量的上界和下界。
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.