天天看点

PCL点云曲面重建(1)

在测量较小的数据时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话,会使得重建的曲面不光滑或者有漏洞,可以采用对数据重采样来解决这样问题,通过对周围的数据点进行高阶多项式插值来重建表面缺少的部分,

(1)用最小二乘法对点云进行平滑处理

新建文件resampling.cpp

结果对比

PCL点云曲面重建(1)
PCL点云曲面重建(1)

(2)在平面模型上提取凸(凹)多边形

本例子先从点云中提取平面模型,再通过该估计的平面模型系数从滤波后的点云投影一组点集形成点云,最后为投影后的点云计算其对应的二维凸多边形

实验结果

PCL点云曲面重建(1)
PCL点云曲面重建(1)

 (3)无序点云的快速三角化

使用贪婪投影三角化算法对有向点云进行三角化,

具体方法是:

(1)先将有向点云投影到某一局部二维坐标平面内

(2)在坐标平面内进行平面内的三角化

(3)根据平面内三位点的拓扑连接关系获得一个三角网格曲面模型.

贪婪投影三角化算法原理:

是处理一系列可以使网格“生长扩大”的点(边缘点)延伸这些点直到所有符合几何正确性和拓扑正确性的点都被连上,该算法可以用来处理来自一个或者多个扫描仪扫描到得到并且有多个连接处的散乱点云但是算法也是有很大的局限性,它更适用于采样点云来自表面连续光滑的曲面且点云的密度变化比较均匀的情况

 首先看一下原来的PCD可视化文件

PCL点云曲面重建(1)

对其进行三角化可视化的结果是

PCL点云曲面重建(1)

效果还是很明显的阿

微信公众号号可扫描二维码一起共同学习交流

PCL点云曲面重建(1)

继续阅读