天天看点

【图像分割】基于matlab随机游走算法图像分割【含Matlab源码 149期】

1 关于全局最优化求解

全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值。上一篇文章讲解了一个求解局部极小值的方法——梯度下降法。这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点。但是当要求精确求解全局最小值时,梯度下降法就不适用了,需要采用其他的办法求解。常见的求解全局最优的办法有拉格朗日法、线性规划法、以及一些人工智能算法比如遗传算法、粒子群算法、模拟退火算法等(可以参见我之前的博客)。而今天要讲的是一个操作简单但是不易陷入局部极小值的方法:随机游走算法。

2 随机游走算法操作步骤

设f(x)f(x)是一个含有nn个变量的多元函数,x=(x1,x2,…,xn)x=(x1,x2,…,xn)为nn维向量。

给定初始迭代点xx,初次行走步长λλ,控制精度ϵϵ(ϵϵ是一个非常小的正数,用于控制结束算法)。

给定迭代控制次数NN,kk为当前迭代次数,置k=1k=1。

当 k<Nk<N时,随机生成一个(−1,1)(−1,1)之间的nn维向量u=(u1,u2,⋯,un),(−1<ui<1,i=1,2,⋯,n)u=(u1,u2,⋯,un),(−1<ui<1,i=1,2,⋯,n),并将其标准化得到u′=u∑ni=1u2i√u′=u∑i=1nui2。令x1=x+λu′x1=x+λu′,完成第一步游走。

计算函数值,如果 f(x1)<f(x)f(x1)<f(x),即找到了一个比初始值好的点,那么kk重新置为1,将x1x1变为xx,回到第2步;否则k=k+1k=k+1,回到第3步。

如果连续NN次都找不到更优的值,则认为,最优解就在以当前最优解为中心,当前步长为半径的NN维球内(如果是三维,则刚好是空间中的球体)。此时,如果λ<ϵλ<ϵ,则结束算法;否则,令λ=λ2λ=λ2,回到第1步,开始新一轮游走。

【图像分割】基于matlab随机游走算法图像分割【含Matlab源码 149期】
【图像分割】基于matlab随机游走算法图像分割【含Matlab源码 149期】

1 matlab版本

2014a

2 参考文献

[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.

[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.

[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.

[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

[5]陈浩,方勇,朱大洲,王成,陈子龙.基于蚁群算法的玉米植株热红外图像边缘检测[J].农机化研究. 2015,37(06)

继续阅读