sicp的習題3.22,也就是以消息傳遞的風格重新實作隊列,我的解答如下:
(define (make-queue)
(let ((front-ptr '())
(rear-ptr '()))
(define (set-front-ptr! ptr) (set! front-ptr ptr))
(define (set-rear-ptr! ptr) (set! rear-ptr ptr))
(define (empty-queue?) (null? front-ptr))
(define (front-queue)
(if (empty-queue?)
(error "front called with an empty queue")
(car front-ptr)))
(define (insert-queue! item)
(let ((new-pair (cons item '())))
(cond ((empty-queue?)
(set-front-ptr! new-pair)
(set-rear-ptr! new-pair))
(else
(set-cdr! rear-ptr new-pair)
(set-rear-ptr! new-pair)))))
(define (delete-queue!)
(error "delete! called with an empty queue" queue))
(set-front-ptr! (cdr front-ptr)))))
(define (dispatch m)
(cond ((eq? m 'front-queue) (front-queue))
((eq? m 'empty-queue?) (empty-queue?))
((eq? m 'insert-queue!) insert-queue!)
((eq? m 'delete-queue!) delete-queue!)
(else
(error "unknow method" m))))
dispatch))
(define (front-queue z) (z 'front-queue))
(define (empty-queue? z) (z 'empty-queue?))
(define (insert-queue! z item) ((z 'insert-queue!) item))
(define (delete-queue! z) ((z 'delete-queue!)))
由此,我才知道自己竟然一直沒有想到,scheme完全可以模拟單向循環連結清單,整整第三章都在講引入指派帶來的影響,而我卻視而不見。在引入了改變函數後,資料對象已經具有oo的性質,模拟連結清單、隊列、table都變的易如反掌。首先,模拟節點對象,節點是一個序對,包括目前節點編号和下一個節點:
(define (make-node n next) (cons n next))
(define (set-next-node! node next) (set-cdr! node next))
(define (set-node-number! node n) (set-car! node n))
(define (get-number node) (car node))
(define (get-next-node node) (cdr node))
有了節點,實作了下單向循環連結清單:
(define (make-cycle-list n)
(let ((head (make-node 1 '())))
(define (make-list current i)
(let ((next-node (make-node (+ i 1) '())))
(cond ((= i n) current)
(else
(set-next-node! current next-node)
(make-list next-node (+ i 1))))))
(set-next-node! (make-list head 1) head)
head))
make-cycle-list生成一個有n個元素的環形連結清單,比如(make-cycle-list 8)的結果如下
#0=(1 2 3 4 5 6 7 8 . #0#)
drscheme形象地展示了這是一個循環的連結清單。那麼約瑟夫環的問題就簡單了:
(define (josephus-cycle n m)
(let ((head (make-cycle-list n)))
(define (josephus-iter prev current i)
(let ((next-node (get-next-node current)))
(cond ((eq? next-node current) (get-number current))
((= 1 i)
(set-next-node! prev next-node)
(josephus-iter prev next-node m))
(else
(josephus-iter current next-node (- i 1))))))
(josephus-iter head head m)))
從head節點開始計數,每到m,就将目前節點删除(通過将前一個節點的next-node設定為current的下一個節點),最後剩下的節點的編号就是答案。
文章轉自莊周夢蝶 ,原文釋出時間 2008-04-16