這隻是一本197頁的書
我想你未必過瘾
但作者附上了諸多好資料
無論是paper, blog文章,wikipedia詞條,資料集還是開源項目等
你可以選擇擁有
附上我收集的資料連結,格式基本按照‘url+資料名稱+出現在書中的頁數’,某些連結可能需要你翻過一道‘牆’,某些重複引用的我就沒重複貼上連結了
http://en.wikipedia.org/wiki/information_overload
p1
http://www.readwriteweb.com/archives/recommender_systems.php
(a guide to recommender system) p4
http://en.wikipedia.org/wiki/cross-selling
(cross selling) p6
http://blog.kiwitobes.com/?p=58
, http://stanford2009.wikispaces.com/
(課程:data mining and e-business: the social data revolution) p7
http://thesearchstrategy.com/ebooks/an%20introduction%20to%20search%20engines%20and%20web%20navigation.pdf
(an introduction to search engines and web navigation) p7
http://www.netflixprize.com/
p8
http://cdn-0.nflximg.com/us/pdf/consumer_press_kit.pdf
p9
http://stuyresearch.googlecode.com/hg-history/c5aa9d65d48c787fd72dcd0ba3016938312102bd/blake/resources/p293-davidson.pdf
(the youtube video recommendation system) p9
http://www.slideshare.net/plamere/music-recommendation-and-discovery
( ppt: music recommendation and discovery) p12
http://www.facebook.com/instantpersonalization/
p13
http://about.digg.com/blog/digg-recommendation-engine-updates
(digg recommendation engine updates) p16
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/36955.pdf
(the learning behind gmail priority inbox)p17
http://www.grouplens.org/papers/pdf/mcnee-chi06-acc.pdf
(accurate is not always good: how accuracy metrics have hurt recommender systems) p20
http://www-users.cs.umn.edu/~mcnee/mcnee-cscw2006.pdf
(don’t look stupid: avoiding pitfalls when recommending research papers)p23
http://www.sigkdd.org/explorations/issues/9-2-2007-12/7-netflix-2.pdf
(major componets of the gravity recommender system) p25
http://cacm.acm.org/blogs/blog-cacm/22925-what-is-a-good-recommendation-algorithm/fulltext
(what is a good recomendation algorithm?) p26
http://research.microsoft.com/pubs/115396/evaluationmetrics.tr.pdf
(evaluation recommendation systems) p27
http://mtg.upf.edu/static/media/phd_ocelma.pdf
(music recommendation and discovery in the long tail) p29
http://ir.ii.uam.es/divers2011/
(internation workshop on novelty and diversity in recommender systems) p29
http://www.cs.ucl.ac.uk/fileadmin/ucl-cs/research/research_notes/rn_11_21.pdf
(auralist: introducing serendipity into music recommendation ) p30
http://www.springerlink.com/content/978-3-540-78196-7/#section=239197&page=1&locus=21
(metrics for evaluating the serendipity of recommendation lists) p30
http://dare.uva.nl/document/131544
(the effects of transparency on trust in and acceptance of a content-based art recommender) p31
http://brettb.net/project/papers/2007%20trust-aware%20recommender%20systems.pdf
(trust-aware recommender systems) p31
http://recsys.acm.org/2011/pdfs/robusttutorial.pdf
(tutorial on robutness of recommender system) p32
http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html
(five stars dominate ratings) p37
http://www.informatik.uni-freiburg.de/~cziegler/bx/
(book-crossing dataset) p38
http://www.dtic.upf.edu/~ocelma/musicrecommendationdataset/lastfm-1k.html
(lastfm dataset) p39
http://mmdays.com/2008/11/22/power_law_1/
(淺談網絡世界的power law現象) p39
http://www.grouplens.org/node/73/
(movielens dataset) p42
http://research.microsoft.com/pubs/69656/tr-98-12.pdf
(empirical analysis of predictive algorithms for collaborative filtering) p49
http://vimeo.com/1242909
(digg vedio) p50
http://glaros.dtc.umn.edu/gkhome/fetch/papers/itemrscikm01.pdf
(evaluation of item-based top-n recommendation algorithms) p58
http://www.cs.umd.edu/~samir/498/amazon-recommendations.pdf
(amazon.com recommendations item-to-item collaborative filtering) p59
http://glinden.blogspot.com/2006/03/early-amazon-similarities.html
(greg linden blog) p63
http://www.hpl.hp.com/techreports/2008/hpl-2008-48r1.pdf
(one-class collaborative filtering) p67
http://en.wikipedia.org/wiki/stochastic_gradient_descent
(stochastic gradient descent) p68
http://www.ideal.ece.utexas.edu/seminar/latentfactormodels.pdf
(latent factor models for web recommender systems) p70
http://en.wikipedia.org/wiki/bipartite_graph
(bipatite graph) p73
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4072747&url=http%3a%2f%2fieeexplore.ieee.org%2fxpls%2fabs_all.jsp%3farnumber%3d4072747
(random-walk computation of similarities between nodes of a graph with application to collaborative recommendation) p74
http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank.pdf
(topic sensitive pagerank) p74
http://www.stanford.edu/dept/icme/docs/thesis/li-2009.pdf
(fast algorithms for sparse matrix inverse computations) p77
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1292
(lifestyle finder: intelligent user profiling using large-scale demographic data) p80
http://research.yahoo.com/files/wsdm266m-golbandi.pdf
( adaptive bootstrapping of recommender systems using decision trees) p87
http://en.wikipedia.org/wiki/vector_space_model
(vector space model) p90
http://tunedit.org/challenge/vlnetchallenge
(冷啟動問題的比賽) p92
http://www.cs.princeton.edu/~blei/papers/bleingjordan2003.pdf
(latent dirichlet allocation) p92
http://en.wikipedia.org/wiki/kullback%e2%80%93leibler_divergence
(kullback–leibler divergence) p93
http://www.pandora.com/about/mgp
(about the music genome project) p94
http://en.wikipedia.org/wiki/list_of_music_genome_project_attributes
(pandora music genome project attributes) p94
http://www.jinni.com/movie-genome.html
(jinni movie genome) p94
http://www.shilad.com/papers/tagsplanations_iui2009.pdf
(tagsplanations: explaining recommendations using tags) p96
http://en.wikipedia.org/wiki/tag_(metadata)
(tag wikipedia) p96
http://www.shilad.com/shilads_thesis.pdf
(nurturing tagging communities) p100
http://www.stanford.edu/~morganya/research/chi2007-tagging.pdf
(why we tag: motivations for annotation in mobile and online media ) p100
http://www.google.com/url?sa=t&rct=j&q=delicious%20dataset%20dai-larbor&source=web&cd=1&ved=0cfiqfjaa&url=http%3a%2f%2fwww.dai-labor.de%2fen%2fcompetence_centers%2firml%2fdatasets%2f&ei=1r4jukyfoku0iqfkvazzcq&;usg=afqjcnguvzzkiki3k2yfybxrcnxbtkqs4a&cad=rjt
(delicious dataset) p101
http://research.microsoft.com/pubs/73692/yihgoca-www06.pdf
(finding advertising keywords on web pages) p118
http://www.kde.cs.uni-kassel.de/ws/rsdc08/
(基于标簽的推薦系統比賽) p119
http://delab.csd.auth.gr/papers/recsys.pdf
(tag recommendations based on tensor dimensionality reduction)p119
http://www.l3s.de/web/upload/documents/1/recsys09.pdf
(latent dirichlet allocation for tag recommendation) p119
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.5271&rep=rep1&type=pdf
(folkrank: a ranking algorithm for folksonomies) p119
http://www.grouplens.org/system/files/tagommenders_numbered.pdf
(tagommenders: connecting users to items through tags) p119
http://www.grouplens.org/system/files/group07-sen.pdf
(the quest for quality tags) p120
http://2011.camrachallenge.com/
(challenge on context-aware movie recommendation) p123
http://bits.blogs.nytimes.com/2011/09/07/the-lifespan-of-a-link/
(the lifespan of a link) p125
http://www0.cs.ucl.ac.uk/staff/l.capra/publications/lathia_sigir10.pdf
(temporal diversity in recommender systems) p129
http://staff.science.uva.nl/~kamps/ireval/papers/paper_14.pdf
(evaluating collaborative filtering over time) p129
http://www.google.com/places/
(hotpot) p139
http://www.readwriteweb.com/archives/google_launches_recommendation_engine_for_places.php
(google launches hotpot, a recommendation engine for places) p139
http://xavier.amatriain.net/pubs/geolocatedrecommendations.pdf
(geolocated recommendations) p140
http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110-netflix-map.html
(a peek into netflix queues) p141
http://www.cs.umd.edu/users/meesh/420/neighbor.pdf
(distance browsing in spatial databases1) p142
http://www.eng.auburn.edu/~weishinn/papers/mdm2010.pdf
(efficient evaluation of k-range nearest neighbor queries in road networks) p143
http://blog.nielsen.com/nielsenwire/consumer/global-advertising-consumers-trust-real-friends-and-virtual-strangers-the-most/
(global advertising: consumers trust real friends and virtual strangers the most) p144
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/36371.pdf
(suggesting friends using the implicit social graph) p145
http://blog.nielsen.com/nielsenwire/online_mobile/friends-frenemies-why-we-add-and-remove-facebook-friends/
(friends & frenemies: why we add and remove facebook friends) p147
http://snap.stanford.edu/data/
(stanford large network dataset collection) p149
http://www.dai-labor.de/camra2010/
(workshop on context-awareness in retrieval and recommendation) p151
http://www.comp.hkbu.edu.hk/~lichen/download/p245-yuan.pdf
(factorization vs. regularization: fusing heterogeneous
social relationships in top-n recommendation) p153
http://www.infoq.com/news/2009/06/twitter-architecture/
(twitter, an evolving architecture) p154
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0cgqqfjab&url=http%3a%2f%2fciteseerx.ist.psu.edu%2fviewdoc%2fdownload%3fdoi%3d10.1.1.165.3679%26rep%3drep1%26type%3dpdf&ei=diijumzee8wviqf5tnjccq&usg=afqjcngw2bhxj6mdypksl66bhue8krs41w&sig2=5ecedhre9s5sqnnojwk7_q
(recommendations in taste related domains) p155
http://www.ercim.eu/publication/ws-proceedings/delnoe02/rashmisinha.pdf
(comparing recommendations made by online systems and friends) p155
http://techcrunch.com/2010/04/22/facebook-edgerank/
(edgerank: the secret sauce that makes facebook's news feed tick) p157
http://www.grouplens.org/system/files/p217-chen.pdf
(speak little and well: recommending conversations in online social streams) p158
http://blog.linkedin.com/2008/04/11/learn-more-abou-2/
(learn more about “people you may know”) p160
http://domino.watson.ibm.com/cambridge/research.nsf/58bac2a2a6b05a1285256b30005b3953/8186a48526821924852576b300537839/$file/tr%202009.09%20make%20new%20frends.pdf
(“make new friends, but keep the old” – recommending people on social networking sites) p164
http://www.google.com.hk/url?sa=t&rct=j&q=social+recommendation+using+prob&source=web&cd=2&ved=0cfcqfjab&url=http%3a%2f%2fciteseerx.ist.psu.edu%2fviewdoc%2fdownload%3fdoi%3d10.1.1.141.465%26rep%3drep1%26type%3dpdf&ei=ly0juj7ol9gpiafe8zzycq&usg=afqjcnh-xtuwrs9hkxta8si5fztaddaeng
(sorec: social recommendation using probabilistic matrix) p165
http://olivier.chapelle.cc/pub/dbn_www2009.pdf
(a dynamic bayesian network click model for web search ranking) p177
http://www.google.com.hk/url?sa=t&rct=j&q=online+learning+from+click+data+spnsored+search&source=web&cd=1&ved=0cfkqfjaa&url=http%3a%2f%2fwww.research.yahoo.net%2ffiles%2fp227-ciaramita.pdf&ei=hy8jujw8crguiqfpx-xycq&usg=afqjcne_cybes8dvo84v-0vxs5feqaj5gq&cad=rjt
(online learning from click data for sponsored search) p177
http://www.cs.cmu.edu/~deepay/mywww/papers/www08-interaction.pdf
(contextual advertising by combining relevance with click feedback) p177
http://tech.hulu.com/blog/2011/09/19/recommendation-system/
(hulu 推薦系統架構) p178
http://mymediaproject.codeplex.com/
(mymedia project) p178
http://www.grouplens.org/papers/pdf/www10_sarwar.pdf
(item-based collaborative filtering recommendation algorithms) p185
http://www.stanford.edu/~koutrika/readings/res/default/billsus98learning.pdf
(learning collaborative information filters) p186
http://sifter.org/~simon/journal/20061211.html
(simon funk blog:funk svd) p187
http://courses.ischool.berkeley.edu/i290-dm/s11/secure/a1-koren.pdf
(factor in the neighbors: scalable and accurate collaborative filtering) p190
http://nlpr-web.ia.ac.cn/2009papers/gjhy/gh26.pdf
(time-dependent models in collaborative filtering based recommender system) p193
http://sydney.edu.au/engineering/it/~josiah/lemma/kdd-fp074-koren.pdf
(collaborative filtering with temporal dynamics) p193
http://en.wikipedia.org/wiki/least_squares
(least squares wikipedia) p195
http://www.mimuw.edu.pl/~paterek/ap_kdd.pdf
(improving regularized singular value decomposition for collaborative filtering) p195
http://public.research.att.com/~volinsky/netflix/kdd08koren.pdf
(factorization meets the neighborhood: a multifaceted
collaborative filtering model) p195