天天看點

智能數字圖像處理之FastRCNN(pytorch)代碼解讀之faster_rcnn_framework.py

class FasterRCNNBase(nn.Module):

廣義R-CNN的主要類。參數:支柱(nn.Module):項(nn.Module):roi_heads (n . module):從RPN擷取特性+建議并計算探測/遮罩。轉換(n . module):執行從輸入到feed的資料轉換該模型 

 def __init__(self, backbone, rpn, roi_heads, transform):-》參數重新指派給變量

        super(FasterRCNNBase, self).__init__()

        self.transform = transform

        self.backbone = backbone

        self.rpn = rpn

        self.roi_heads = roi_heads

        self._has_warned = False-》僅在torchscript模式下使用

    @torch.jit.unused

    def eager_outputs(self, losses, detections):-》訓練時傳回損失值測試時傳回檢測值

        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]

        if self.training:

            return losses

        return detections

 def forward(self, images, targets=None):-》前向傳播,參數:圖像(清單[張量]):待處理的圖像目标(list[Dict[張量]]):圖像中出現的地面真值盒(可選)傳回:結果(list[BoxList]或dict[張量]):模型的輸出。在訓練期間,它傳回一個包含損失的dict[張量]。在測試期間,它傳回包含其他字段的list[BoxList]比如“分數”、“标簽”和“mask”(用于mask R-CNN模型)。

        if self.training and targets is None:-》傳值為空報錯

            raise ValueError("In training mode, targets should be passed")

        if self.training:

            assert targets is not None

            for target in targets:         # 進一步判斷傳入的target的boxes參數是否符合規定

                boxes = target["boxes"]-》取boxes值

                if isinstance(boxes, torch.Tensor):

                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:

                        raise ValueError("Expected target boxes to be a tensor"-》報錯期望目标框是一個張量

                                         "of shape [N, 4], got {:}.".format(

                                          boxes.shape))

                else:

                    raise ValueError("Expected target boxes to be of type "-》報錯預期的目标框是類型的

                                     "Tensor, got {:}.".format(type(boxes)))

        original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])-》擷取圖像資料集大小

        for img in images:-》周遊圖像

            val = img.shape[-2:]

            assert len(val) == 2  # 防止輸入的是個一維向量

            original_image_sizes.append((val[0], val[1]))-》擷取圖像大小

        # original_image_sizes = [img.shape[-2:] for img in images]

        images, targets = self.transform(images, targets)  # 對圖像進行預處理

        # print(images.tensors.shape)

        features = self.backbone(images.tensors)  # 将圖像輸入backbone得到特征圖

        if isinstance(features, torch.Tensor):  # 若隻在一層特征層上預測,将feature放入有序字典中,并編号為‘0’

            features = OrderedDict([('0', features)])  # 若在多層特征層上預測,傳入的就是一個有序字典

        # 将特征層以及标注target資訊傳入rpn中

        proposals, proposal_losses = self.rpn(images, features, targets)

        # 将rpn生成的資料以及标注target資訊傳入fast rcnn後半部分

        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)

        # 對網絡的預測結果進行後處理(主要将bboxes還原到原圖像尺度上)

        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        losses = {}

        losses.update(detector_losses)-》更新檢測損失值

        losses.update(proposal_losses)-》更新标簽損失值

        if torch.jit.is_scripting():

            if not self._has_warned:

                warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")-》輸出警告資訊

                self._has_warned = True

            return losses, detections

        else:

            return self.eager_outputs(losses, detections)

class TwoMLPHead(nn.Module):-》基于fpga的模型的标準頭參數:in_channels (int):輸入通道的數目representation_size (int):中間表示的大小

    def __init__(self, in_channels, representation_size):

        super(TwoMLPHead, self).__init__()

        self.fc6 = nn.Linear(in_channels, representation_size)

        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):

        x = x.flatten(start_dim=1)-》降維

        x = F.relu(self.fc6(x))-》降維

        x = F.relu(self.fc7(x))-》降維

        return x

class FastRCNNPredictor(nn.Module):-》标準分類+邊界框回歸層R-CNN為快。參數:in_channels (int):輸入通道的數目

num_classes (int):輸出類的數量(包括背景)

    def __init__(self, in_channels, num_classes):

        super(FastRCNNPredictor, self).__init__()

        self.cls_score = nn.Linear(in_channels, num_classes)

        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):

        if x.dim() == 4:

            assert list(x.shape[2:]) == [1, 1]

        x = x.flatten(start_dim=1)

        scores = self.cls_score(x)-》全連接配接神經網絡輸出分類預測值

        bbox_deltas = self.bbox_pred(x)-》全連接配接神經網絡輸出目标框預測

        return scores, bbox_deltas

class FasterRCNN(FasterRCNNBase):

 def __init__(self, backbone, num_classes=None,

                 #轉換參數

                 min_size=800, max_size=1000,      # 預處理resize時限制的最小尺寸與最大尺寸

                 image_mean=None, image_std=None,  # 預處理normalize時使用的均值和方差

                 # RPN 參數

                 rpn_anchor_generator=None, rpn_head=None,

                 rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000,    # rpn中在nms處理前保留的proposal數(根據score)

                 rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,  # rpn中在nms處理後保留的proposal數

                 rpn_nms_thresh=0.7,  # rpn中進行nms處理時使用的iou門檻值

                 rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,  # rpn計算損失時,采集正負樣本設定的門檻值

                 rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,  # rpn計算損失時采樣的樣本數,以及正樣本占總樣本的比例

                 # 框參數

                 box_roi_pool=None, box_head=None, box_predictor=None,

                 # 移除低目标機率      fast rcnn中進行nms處理的門檻值   對預測結果根據score排序取前100個目标

                 box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,

                 box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,   # fast rcnn計算誤差時,采集正負樣本設定的門檻值

                 box_batch_size_per_image=512, box_positive_fraction=0.25,  # fast rcnn計算誤差時采樣的樣本數,以及正樣本占所有樣本的比例

                 bbox_reg_weights=None):

        if not hasattr(backbone, "out_channels"):

            raise ValueError(

                "backbone should contain an attribute out_channels"主幹應該包含一個out_channels屬性

                "specifying the number of output channels  (assumed to be the"指定輸出通道的數量(假設為所有的級别都一樣

                "same for all the levels"

            )

        assert isinstance(rpn_anchor_generator, (AnchorsGenerator, type(None)))-》斷言

        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:

            if box_predictor is not None:

                raise ValueError("num_classes should be None when box_predictor "當box_predictor時,num_classes應該為None

                                 "is specified")

        else:

            if box_predictor is None:

                raise ValueError("num_classes should not be None when box_predictor "

                                 "is not specified")

        # 預測特征層的channels

        out_channels = backbone.out_channels

        # 若anchor生成器為空,則自動生成針對resnet50_fpn的anchor生成器

        if rpn_anchor_generator is None:

            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))

            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)

            rpn_anchor_generator = AnchorsGenerator(

                anchor_sizes, aspect_ratios

            )

        # 生成RPN通過滑動視窗預測網絡部分

        if rpn_head is None:

            rpn_head = RPNHead(

                out_channels, rpn_anchor_generator.num_anchors_per_location()[0]

            )

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)

        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        # 定義整個RPN架構

        rpn = RegionProposalNetwork(

            rpn_anchor_generator, rpn_head,

            rpn_fg_iou_thresh, rpn_bg_iou_thresh,

            rpn_batch_size_per_image, rpn_positive_fraction,

            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)

        #  多尺度RoIAlign池化

        if box_roi_pool is None:

            box_roi_pool = MultiScaleRoIAlign(

                featmap_names=['0', '1', '2', '3'],  # 在哪些特征層進行roi pooling

                output_size=[7, 7],

                sampling_ratio=2)

        # fast RCNN中roi pooling後的展平處理兩個全連接配接層部分

        if box_head is None:

            resolution = box_roi_pool.output_size[0]  # 預設等于7

            representation_size = 1024

            box_head = TwoMLPHead(

                out_channels * resolution ** 2,

                representation_size

            )

        # 在box_head的輸出上預測部分

        if box_predictor is None:

            representation_size = 1024

            box_predictor = FastRCNNPredictor(

                representation_size,

                num_classes)

        # 将roi pooling, box_head以及box_predictor結合在一起

        roi_heads = RoIHeads(

            # box

            box_roi_pool, box_head, box_predictor,

            box_fg_iou_thresh, box_bg_iou_thresh,

            box_batch_size_per_image, box_positive_fraction,

            bbox_reg_weights,

            box_score_thresh, box_nms_thresh, box_detections_per_img)

        if image_mean is None:

            image_mean = [0.485, 0.456, 0.406]

        if image_std is None:

            image_std = [0.229, 0.224, 0.225]

        # 對資料進行标準化,縮放,打包成batch等處理部分

        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)

import torch
from torch import nn
from collections import OrderedDict
from network_files.rpn_function import AnchorsGenerator, RPNHead, RegionProposalNetwork
from network_files.roi_head import RoIHeads
from torchvision.ops import MultiScaleRoIAlign
from torch.jit.annotations import Tuple, List, Dict, Optional
from torch import Tensor
import torch.nn.functional as F
import warnings
from network_files.transform import GeneralizedRCNNTransform


class FasterRCNNBase(nn.Module):
    """
    Main class for Generalized R-CNN.

    Arguments:
        backbone (nn.Module):
        rpn (nn.Module):
        roi_heads (nn.Module): takes the features + the proposals from the RPN and computes
            detections / masks from it.
        transform (nn.Module): performs the data transformation from the inputs to feed into
            the model
    """

    def __init__(self, backbone, rpn, roi_heads, transform):
        super(FasterRCNNBase, self).__init__()
        self.transform = transform
        self.backbone = backbone
        self.rpn = rpn
        self.roi_heads = roi_heads
        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        if self.training:
            return losses

        return detections

    def forward(self, images, targets=None):
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        """
        Arguments:
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:         # 進一步判斷傳入的target的boxes參數是否符合規定
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
                        raise ValueError("Expected target boxes to be a tensor"
                                         "of shape [N, 4], got {:}.".format(
                                          boxes.shape))
                else:
                    raise ValueError("Expected target boxes to be of type "
                                     "Tensor, got {:}.".format(type(boxes)))

        original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2  # 防止輸入的是個一維向量
            original_image_sizes.append((val[0], val[1]))
        # original_image_sizes = [img.shape[-2:] for img in images]

        images, targets = self.transform(images, targets)  # 對圖像進行預處理
        # print(images.tensors.shape)
        features = self.backbone(images.tensors)  # 将圖像輸入backbone得到特征圖
        if isinstance(features, torch.Tensor):  # 若隻在一層特征層上預測,将feature放入有序字典中,并編号為‘0’
            features = OrderedDict([('0', features)])  # 若在多層特征層上預測,傳入的就是一個有序字典

        # 将特征層以及标注target資訊傳入rpn中
        proposals, proposal_losses = self.rpn(images, features, targets)

        # 将rpn生成的資料以及标注target資訊傳入fast rcnn後半部分
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)

        # 對網絡的預測結果進行後處理(主要将bboxes還原到原圖像尺度上)
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        else:
            return self.eager_outputs(losses, detections)

        # if self.training:
        #     return losses
        #
        # return detections


class TwoMLPHead(nn.Module):
    """
    Standard heads for FPN-based models

    Arguments:
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
    """

    def __init__(self, in_channels, representation_size):
        super(TwoMLPHead, self).__init__()

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

    Arguments:
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

    def __init__(self, in_channels, num_classes):
        super(FastRCNNPredictor, self).__init__()
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
        if x.dim() == 4:
            assert list(x.shape[2:]) == [1, 1]
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


class FasterRCNN(FasterRCNNBase):
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with values
          between 0 and H and 0 and W
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
        - boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with values between
          0 and H and 0 and W
        - labels (Int64Tensor[N]): the predicted labels for each image
        - scores (Tensor[N]): the scores or each prediction

    Arguments:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    """

    def __init__(self, backbone, num_classes=None,
                 # transform parameter
                 min_size=800, max_size=1000,      # 預處理resize時限制的最小尺寸與最大尺寸
                 image_mean=None, image_std=None,  # 預處理normalize時使用的均值和方差
                 # RPN parameters
                 rpn_anchor_generator=None, rpn_head=None,
                 rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000,    # rpn中在nms處理前保留的proposal數(根據score)
                 rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,  # rpn中在nms處理後保留的proposal數
                 rpn_nms_thresh=0.7,  # rpn中進行nms處理時使用的iou門檻值
                 rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,  # rpn計算損失時,采集正負樣本設定的門檻值
                 rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,  # rpn計算損失時采樣的樣本數,以及正樣本占總樣本的比例
                 # Box parameters
                 box_roi_pool=None, box_head=None, box_predictor=None,
                 # 移除低目标機率      fast rcnn中進行nms處理的門檻值   對預測結果根據score排序取前100個目标
                 box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,
                 box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5,   # fast rcnn計算誤差時,采集正負樣本設定的門檻值
                 box_batch_size_per_image=512, box_positive_fraction=0.25,  # fast rcnn計算誤差時采樣的樣本數,以及正樣本占所有樣本的比例
                 bbox_reg_weights=None):
        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels"
                "specifying the number of output channels  (assumed to be the"
                "same for all the levels"
            )

        assert isinstance(rpn_anchor_generator, (AnchorsGenerator, type(None)))
        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor "
                                 "is specified")
        else:
            if box_predictor is None:
                raise ValueError("num_classes should not be None when box_predictor "
                                 "is not specified")

        # 預測特征層的channels
        out_channels = backbone.out_channels

        # 若anchor生成器為空,則自動生成針對resnet50_fpn的anchor生成器
        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            rpn_anchor_generator = AnchorsGenerator(
                anchor_sizes, aspect_ratios
            )

        # 生成RPN通過滑動視窗預測網絡部分
        if rpn_head is None:
            rpn_head = RPNHead(
                out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
            )

        # 預設rpn_pre_nms_top_n_train = 2000, rpn_pre_nms_top_n_test = 1000,
        # 預設rpn_post_nms_top_n_train = 2000, rpn_post_nms_top_n_test = 1000,
        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        # 定義整個RPN架構
        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)

        #  Multi-scale RoIAlign pooling
        if box_roi_pool is None:
            box_roi_pool = MultiScaleRoIAlign(
                featmap_names=['0', '1', '2', '3'],  # 在哪些特征層進行roi pooling
                output_size=[7, 7],
                sampling_ratio=2)

        # fast RCNN中roi pooling後的展平處理兩個全連接配接層部分
        if box_head is None:
            resolution = box_roi_pool.output_size[0]  # 預設等于7
            representation_size = 1024
            box_head = TwoMLPHead(
                out_channels * resolution ** 2,
                representation_size
            )

        # 在box_head的輸出上預測部分
        if box_predictor is None:
            representation_size = 1024
            box_predictor = FastRCNNPredictor(
                representation_size,
                num_classes)

        # 将roi pooling, box_head以及box_predictor結合在一起
        roi_heads = RoIHeads(
            # box
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]

        # 對資料進行标準化,縮放,打包成batch等處理部分
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)
           

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

繼續閱讀