基于遺傳算法的PID參數整定研究
下面對實數編碼下遺傳算法的PID參數整定代碼進行詳細講解,并附上程式。
1.3.3基于遺傳算法的PID參數整定代碼
主函數 main.m
%GA(Generic Algorithm) Program to optimize PID Parameters
clear all;
close all;
global rin yout timef
Size=30; % 種群大小30個 可行解
CodeL=3; % 三個實數編碼 三個決策變量
MinX(1)=zeros(1);
MaxX(1)=20*ones(1);
MinX(2)=zeros(1);
MaxX(2)=1.0*ones(1);
MinX(3)=zeros(1);
MaxX(3)=1.0*ones(1);
Kpid(:,1)=MinX(1)+(MaxX(1)-MinX(1))*rand(Size,1);
Kpid(:,2)=MinX(2)+(MaxX(2)-MinX(2))*rand(Size,1);
Kpid(:,3)=MinX(3)+(MaxX(3)-MinX(3))*rand(Size,1);
G=100; % 種群運作100次
BsJ=0;
%*************** Start Running ***************
for kg=1:1:G
time(kg)=kg;
%****** Step 1 : Evaluate BestJ ******
for i=1:1:Size
Kpidi=Kpid(i,:); %單個可行解
[Kpidi,BsJ]=chap_f(Kpidi,BsJ);
BsJi(i)=BsJ;
end
[OderJi,IndexJi]=sort(BsJi);
BestJ(kg)=OderJi(1);
BJ=BestJ(kg);
Ji=BsJi+1e-10; %Avoiding deviding zero
fi=1./Ji;
% Cm=max(Ji);
% fi=Cm-Ji;
[Oderfi,Indexfi]=sort(fi); %Arranging fi small to bigger
Bestfi=Oderfi(Size); %Let Bestfi=max(fi)
BestS=Kpid(Indexfi(Size),:); %Let BestS=E(m), m is the Indexfi belong to max(fi)
kg
BJ
BestS
%****** Step 2 : Select and Reproduct Operation******
fi_sum=sum(fi);
fi_Size=(Oderfi/fi_sum)*Size;
fi_S=floor(fi_Size); % Selecting Bigger fi value
r=Size-sum(fi_S);
Rest=fi_Size-fi_S;
[RestValue,Index]=sort(Rest);
for i=Size:-1:Size-r+1
fi_S(Index(i))=fi_S(Index(i))+1; % Adding rest to equal Size
end
k=1;
for i=Size:-1:1 % Select the Sizeth and Reproduce firstly
for j=1:1:fi_S(i)
TempE(k,:)=Kpid(Indexfi(i),:); % Select and Reproduce
k=k+1; % k is used to reproduce
end
end
%************ Step 3 : Crossover Operation ************
Pc=0.90;
for i=1:2:(Size-1)
temp=rand;
if Pc>temp %Crossover Condition
alfa=rand;
TempE(i,:)=alfa*Kpid(i+1,:)+(1-alfa)*Kpid(i,:);
TempE(i+1,:)=alfa*Kpid(i,:)+(1-alfa)*Kpid(i+1,:);
end
end
TempE(Size,:)=BestS;
Kpid=TempE;
%************ Step 4: Mutation Operation **************
Pm=0.10-[1:1:Size]*(0.01)/Size; %Bigger fi,smaller Pm
Pm_rand=rand(Size,CodeL);
Mean=(MaxX + MinX)/2;
Dif=(MaxX-MinX);
for i=1:1:Size
for j=1:1:CodeL
if Pm(i)>Pm_rand(i,j) %Mutation Condition
TempE(i,j)=Mean(j)+Dif(j)*(rand-0.5);
end
end
end
%Guarantee TempE(Size,:) belong to the best individual
TempE(Size,:)=BestS;
Kpid=TempE;
end
Bestfi
BestS
Best_J=BestJ(G)
figure(1);
plot(time,BestJ);
xlabel('Times');ylabel('Best J');
figure(2);
plot(timef,rin,'r',timef,yout,'b');
xlabel('Time(s)');ylabel('rin,yout');
目标函數編寫 chap_f.m
function [Kpidi,BsJ]=pid_gaf(Kpidi,BsJ)
global rin yout timef
ts=0.001;
sys=tf(400,[1,50,0]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
rin=1.0;
u_1=0.0;u_2=0.0;
y_1=0.0;y_2=0.0;
x=[0,0,0]';
B=0;
error_1=0;
tu=1;
s=0;
P=100;
for k=1:1:P
timef(k)=k*ts;
r(k)=rin;
u(k)=Kpidi(1)*x(1)+Kpidi(2)*x(2)+Kpidi(3)*x(3);
if u(k)>=10
u(k)=10;
end
if u(k)<=-10
u(k)=-10;
end
yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2;
error(k)=r(k)-yout(k);
%------------ Return of PID parameters -------------
u_2=u_1;u_1=u(k);
y_2=y_1;y_1=yout(k);
x(1)=error(k); % Calculating P
x(2)=(error(k)-error_1)/ts; % Calculating D
x(3)=x(3)+error(k)*ts; % Calculating I
error_2=error_1;
error_1=error(k);
if s==0
if yout(k)>0.95&yout(k)<1.05
tu=timef(k); % 上升時間
s=1;
end
end
end
for i=1:1:P
Ji(i)=0.999*abs(error(i))+0.01*u(i)^2*0.1;
B=B+Ji(i);
if i>1
erry(i)=yout(i)-yout(i-1);
if erry(i)<0
B=B+100*abs(erry(i));
end
end
end
BsJ=B+0.2*tu*10;
程式運作結果:
