天天看點

kitti之ros可視化_學習筆記--第10課:添加id到3d偵測盒上方

環境:ubuntu16.04,ros-kinetic,python2,vscode,opencv,rviz

概要:這節課筆記,新增展示的是,在物體3d偵測盒上方顯示id。

資料準備及預處理可參考部落格,

https://blog.csdn.net/qq_45701501/article/details/116447770

tracking資料準備:

https://blog.csdn.net/qq_45701501/article/details/116586427

1、思路

包存儲位置、建立、編譯、運作這些參考本人這系列前面的部落格。

主要思路:添加id給3d偵測盒,也就是從tracking資料集中,讀取track_id,并轉為np數組格式;給釋出3d偵測盒函數添加一個用于傳入id的形參,在函數體中添加用于顯示id的marker。

2、源碼

包含四個檔案:讀取資料檔案data_utils.py,釋出函數檔案publish_utils.py,将3d偵測框從相機坐标系轉為雷達坐标系顯示檔案kitti_utils.py,主函數檔案p15_kitti.py.

data_utils.py:

#!/usr/bin/env python
# -*- coding:utf8 -*-

import cv2
import numpy as np
import os
import pandas as pd #用于讀取imu資料

IMU_COLUMN_NAMES = ['lat','lon','alt','roll','pitch','yaw','vn','ve','vf','vl','vu',
                    'ax','ay','az','af','al','au','wx','wy','wz','wf','wl','wu',
                    'posacc','velacc','navstat','numsats','posmode','velmode','orimode'
                    ]#根據kitti資料集中的名稱進行定義的,個人了解是對照c裡面的宏定義

TRACKING_COLUMN_NAMES=['frame', 'track_id', 'type', 'truncated', 'occluded', 'alpha', 
                'bbox_left', 'bbox_top','bbox_right', 'bbox_bottom', 'height', 
                'width', 'length', 'pos_x', 'pos_y', 'pos_z', 'rot_y']#tracking資料機關


#讀取圖檔路徑函數
def read_camera(path):
    return cv2.imread(path)

#讀取點雲路徑函數
def read_point_cloud(path):
    return np.fromfile(path,dtype=np.float32).reshape(-1,4)

#讀取imu資料
def read_imu(path):
    df=pd.read_csv(path,header=None,sep=' ')#讀取資料
    df.columns=IMU_COLUMN_NAMES#給資料賦予機關
    return df

#讀取trackiing資料
def read_tracking(path):
    df=pd.read_csv(path,header=None,sep=' ')#讀取tracking資料
    df.columns=TRACKING_COLUMN_NAMES#給資料資料添加機關
    df.loc[df.type.isin(['Truck','Van','Tram']),'type']='Car'#将這三種車子,統一定義為Car
    df=df[df.type.isin(['Car','Pedestrian','Cyclist'])]#隻是擷取資料集中類型為指定的資料,注意car為重定義類型
    return df#傳回讀取的資料
           

publish_utils.py:

#!/usr/bin/env python
# -*- coding:utf8 -*-

import rospy
from std_msgs.msg import Header
from visualization_msgs.msg import Marker,MarkerArray#Marker繪制相機視野訓示線子產品,MarkerArray解決Marker帶來釋出的不同步問題
from sensor_msgs.msg import Image,PointCloud2,Imu,NavSatFix
from geometry_msgs.msg import Point#Point來自ros包定義,是以需要定義;若不清楚,則需要到ros官網上面檢視具體那個包
import sensor_msgs.point_cloud2 as pcl2
from cv_bridge import CvBridge
import numpy as np
import tf
import cv2

FRAME_ID='map'
DETECTION_COLOR_DICT = {'Car':(255,255,0),'Pedestrian':(0,226,255),'Cyclist':(141,40,255)}#顔色字典

#車頭朝前,左上點為0,順時針,0,1,2,3四個點,頂部同樣順時針,依次為(0頂部)4,5,6,7
#偵測盒資料,連線順序
LINES = [[0, 1], [1, 2], [2, 3], [3, 0]] # lower face
LINES+= [[4, 5], [5, 6], [6, 7], [7, 4]] #upper face
LINES+= [[4, 0], [5, 1], [6, 2], [7, 3]] #connect lower face and upper face
LINES+= [[4, 1], [5, 0]] #front face 對角線表示叉叉以表示正前方

#偵測盒存在的時長
LIFETIME = 0.1

#釋出圖檔函數
def publish_camera(cam_pub,bridge,image,boxes,types):#增加參數boxes、types
    #繪制框框到圖檔中
    for typ,box in zip(types,boxes):#給對應類型每個box繪制對應顔色圖線
        top_left=int(box[0]),int(box[1])#box的左上角點,像素為整數,是以需要轉換int類型
        bottom_right=int(box[2]),int(box[3])#box的右下角點
        #繪制框框,依次指定圖檔、左上角點、右下角點、根據類型不同給的顔色(bgr)、線粗細
        cv2.rectangle(image,top_left,bottom_right,DETECTION_COLOR_DICT[typ],2)
    cam_pub.publish(bridge.cv2_to_imgmsg(image,"bgr8"))

#釋出點雲函數
def publish_point_cloud(pcl_pub,point_clond):
    header=Header()
    header.stamp=rospy.Time.now()
    header.frame_id=FRAME_ID
    pcl_pub.publish(pcl2.create_cloud_xyz32(header,point_clond[:,:3]))

#釋出相機視野以及車子模型marker函數
def publish_ego_car(ego_car_pub):
#publish left and right 45 degree FOV lines and ego car model mesh
    
    marker_array=MarkerArray()#解決marker釋出不同步問題

    marker=Marker()
    marker.header.frame_id=FRAME_ID
    marker.header.stamp=rospy.Time.now()

    marker.id=0#每個marker隻能有一個id,有重複的id,隻會顯示一個
    marker.action=Marker.ADD#表示添加marker
    marker.lifetime=rospy.Duration()#lifetime表示marker在畫面中顯示的時長;Duration()函數,不給任何參數時,表示一直存在
    marker.type=Marker.LINE_STRIP#所釋出marker的類型

    #設定訓示線顔色
    marker.color.r=0.0
    marker.color.g=1.0
    marker.color.b=0.0
    marker.color.a=1.0#透明度,1表示完全不透明
    marker.scale.x=0.2#大小,這裡表示線的粗細

    #根據雷射點雲的坐标系來定義2号相機的視野範圍
    marker.points=[]
    marker.points.append(Point(10,-10,0))#Point,屬于ros的資料包裡面的定義,是以需要導入
    marker.points.append(Point(0,0,0))
    marker.points.append(Point(10,10,0))

    marker_array.markers.append(marker)#将訓示線marker放到MarkerArray中

    #釋出車子外形函數
    mesh_marker=Marker()
    mesh_marker.header.frame_id=FRAME_ID
    mesh_marker.header.stamp=rospy.Time.now()

    mesh_marker.id=-1#id隻能設定整數,不能設定帶有小數的
    mesh_marker.lifetime=rospy.Duration()
    mesh_marker.type=Marker.MESH_RESOURCE#這裡的MESH_RESOURCE表示導入的是3d模型
    mesh_marker.mesh_resource="package://kitti_tutorial/Audi R8/Models/Audi R8.dae"#下載下傳的dae模型存在問題,隻是顯示部分

    #設定模型位置
    mesh_marker.pose.position.x=0.0
    mesh_marker.pose.position.y=0.0
    mesh_marker.pose.position.z=-1.73#這裡負數,是因為以雷射雷達坐标系而定義的,1.73是根據官方釋出的位置定義所取的

    #設計車子模型的旋轉量
    q=tf.transformations.quaternion_from_euler(0,0,np.pi/2)#(np.pi/2,0,np.pi)這裡根據下載下傳的車子模型進行調整
    mesh_marker.pose.orientation.x=q[0]
    mesh_marker.pose.orientation.y=q[1]
    mesh_marker.pose.orientation.z=q[2]
    mesh_marker.pose.orientation.w=q[3]

    #設定車子模型的顔色
    mesh_marker.color.r=1.0
    mesh_marker.color.g=1.0
    mesh_marker.color.b=1.0
    mesh_marker.color.a=1.0

    #設定車子模型的大小
    mesh_marker.scale.x=0.6
    mesh_marker.scale.y=0.6
    mesh_marker.scale.z=0.6

    marker_array.markers.append(mesh_marker)#将車子marker放到MarkerArray中

    ego_car_pub.publish(marker_array)

#釋出imu資料函數
def publish_imu(imu_pub,imu_data):
    imu=Imu()#ros,imu 進行google可以檢視文檔說明
    imu.header.frame_id=FRAME_ID
    imu.header.stamp=rospy.Time.now()

    #旋轉角度、加速度,角速度
    q=tf.transformations.quaternion_from_euler(float(imu_data.roll),float(imu_data.pitch),float(imu_data.yaw))#(np.pi/2,0,np.pi)這裡根據下載下傳的車子模型進行調整
    imu.orientation.x=q[0]#以下四個表示旋轉角,将讀取的資料轉為四元數表示
    imu.orientation.y=q[1]
    imu.orientation.z=q[2]
    imu.orientation.w=q[3]
    imu.linear_acceleration.x=imu_data.af#根據雷達坐标系,确定x方向線性加速度
    imu.linear_acceleration.y=imu_data.al#根據雷達坐标系,确定y方向線性加速度
    imu.linear_acceleration.z=imu_data.au#根據雷達坐标系,确定z方向線性加速度
    imu.angular_velocity.x=imu_data.wf#這三個表示不同方向的角速度
    imu.angular_velocity.y=imu_data.wl
    imu.angular_velocity.z=imu_data.wu

    imu_pub.publish(imu)

#釋出gps資料函數
def publish_gps(gps_pub,imu_data):
    gps=NavSatFix()#ros裡面對于gps資料識别包
    gps.header.frame_id=FRAME_ID
    gps.header.stamp=rospy.Time.now()

    gps.latitude=imu_data.lat#緯度
    gps.longitude=imu_data.lon#經度
    gps.altitude=imu_data.alt#海拔

    gps_pub.publish(gps)

#釋出偵測盒函數
#def publish_3dbox(box3d_pub,corners_3d_velos):#偵測盒顔色一緻寫法
#def publish_3dbox(box3d_pub,corners_3d_velos,types):#types指定物體種類以表示不同顔色
def publish_3dbox(box3d_pub,corners_3d_velos,types,track_ids):#再增加track_id參數    
    marker_array=MarkerArray()#把所有marker放在一起釋出
    for i,corners_3d_velo in enumerate(corners_3d_velos):#對每個頂點建立marker
        marker = Marker()
        marker.header.frame_id = FRAME_ID
        marker.header.stamp =rospy.Time.now()

        marker.id =i 
        marker.action = Marker.ADD
        #由于車子一直在運動,0.1秒會更新一次,是以偵測盒更新時間為LIFETIME=0.1秒,防止偵測盒一直存在
        marker.lifetime =rospy.Duration(LIFETIME)
        marker.type = Marker.LINE_LIST

        # marker.color.r = 0.0#這幾行表示釋出的偵查盒顔色都一樣的
        # marker.color.g = 1.0
        # marker.color.b = 1.0
        b, g, r = DETECTION_COLOR_DICT[types[i]]#根據不同類型,偵測盒顔色給不一樣
        marker.color.r = r/255.0   #由于是python2,是以需要加.0才會做小數點除法
        marker.color.g = g/255.0
        marker.color.b = b/255.0
        
        marker.color.a = 1.0

        marker.scale.x = 0.1

        marker.points = []
        for l in LINES:#給8個頂點指定連線順序,上面有定義
            p1 = corners_3d_velo[l[0]]
            marker.points.append(Point(p1[0],p1[1],p1[2]))
            p2 = corners_3d_velo[l[1]]
            marker.points.append(Point(p2[0],p2[1],p2[2]))
        marker_array.markers.append(marker)

        #track_id的marker
        text_marker = Marker()
        text_marker.header.frame_id = FRAME_ID
        text_marker.header.stamp = rospy.Time.now()

        text_marker.id = i +1000 #i和上面定義一緻,保證釋出正常顯示
        text_marker.action = Marker.ADD
        text_marker.lifetime = rospy.Duration(LIFETIME)
        text_marker.type = Marker.TEXT_VIEW_FACING #TEXT表示文字,VIEW_FACING表示一直朝向你觀看方向

        #p4 = corners_3d_velo[4]#upper front left corner定義設定的marker位置,這裡表示上左角
        p4 = np.mean(corners_3d_velo,axis=0)#axis=0表示取的是垂直方向的軸的平均,是的顯示在偵測盒中心上方

        text_marker.pose.position.x = p4[0]
        text_marker.pose.position.y = p4[1]
        text_marker.pose.position.z = p4[2] + 1 #讓track_id顯示在偵測盒上方

        text_marker.text = str(track_ids[i])  #指定marker顯示文字内容,str将track_id内容轉換為string類型才行顯示

        #指定marker大小
        text_marker.scale.x = 1
        text_marker.scale.y = 1
        text_marker.scale.z = 1

        b, g, r = DETECTION_COLOR_DICT[types[i]] #track_id文字顯示顔色根據物體種類顯示
        text_marker.color.r = r/255.0
        text_marker.color.g = g/255.0
        text_marker.color.b = b/255.0
        text_marker.color.a = 1.0
        marker_array.markers.append(text_marker)

    box3d_pub.publish(marker_array)#釋出
           

kitti_utils.py:

""" Helper methods for loading and parsing KITTI data.

Author: Charles R. Qi
Date: September 2017
"""
from __future__ import print_function

import numpy as np
import cv2
import os

class Object3d(object):
    ''' 3d object label '''
    def __init__(self, label_file_line):
        data = label_file_line.split(' ')
        data[1:] = [float(x) for x in data[1:]]

        # extract label, truncation, occlusion
        self.type = data[0] # 'Car', 'Pedestrian', ...
        self.truncation = data[1] # truncated pixel ratio [0..1]
        self.occlusion = int(data[2]) # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
        self.alpha = data[3] # object observation angle [-pi..pi]

        # extract 2d bounding box in 0-based coordinates
        self.xmin = data[4] # left
        self.ymin = data[5] # top
        self.xmax = data[6] # right
        self.ymax = data[7] # bottom
        self.box2d = np.array([self.xmin,self.ymin,self.xmax,self.ymax])
        
        # extract 3d bounding box information
        self.h = data[8] # box height
        self.w = data[9] # box width
        self.l = data[10] # box length (in meters)
        self.t = (data[11],data[12],data[13]) # location (x,y,z) in camera coord.
        self.ry = data[14] # yaw angle (around Y-axis in camera coordinates) [-pi..pi]

    def print_object(self):
        print('Type, truncation, occlusion, alpha: %s, %d, %d, %f' % \
            (self.type, self.truncation, self.occlusion, self.alpha))
        print('2d bbox (x0,y0,x1,y1): %f, %f, %f, %f' % \
            (self.xmin, self.ymin, self.xmax, self.ymax))
        print('3d bbox h,w,l: %f, %f, %f' % \
            (self.h, self.w, self.l))
        print('3d bbox location, ry: (%f, %f, %f), %f' % \
            (self.t[0],self.t[1],self.t[2],self.ry))


class Calibration(object):
    ''' Calibration matrices and utils
        3d XYZ in <label>.txt are in rect camera coord.
        2d box xy are in image2 coord
        Points in <lidar>.bin are in Velodyne coord.
        y_image2 = P^2_rect * x_rect
        y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo
        x_ref = Tr_velo_to_cam * x_velo
        x_rect = R0_rect * x_ref
        P^2_rect = [f^2_u,  0,      c^2_u,  -f^2_u b^2_x;
                    0,      f^2_v,  c^2_v,  -f^2_v b^2_y;
                    0,      0,      1,      0]
                 = K * [1|t]
        image2 coord:
         ----> x-axis (u)
        |
        |
        v y-axis (v)
        velodyne coord:
        front x, left y, up z
        rect/ref camera coord:
        right x, down y, front z
        Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf
        TODO(rqi): do matrix multiplication only once for each projection.
    '''
    def __init__(self, calib_filepath, from_video=False):
        if from_video:
            calibs = self.read_calib_from_video(calib_filepath)
        else:
            calibs = self.read_calib_file(calib_filepath)
        # Projection matrix from rect camera coord to image2 coord
        self.P = calibs['P2'] 
        self.P = np.reshape(self.P, [3,4])
        # Rigid transform from Velodyne coord to reference camera coord
        self.V2C = calibs['Tr_velo_to_cam']
        self.V2C = np.reshape(self.V2C, [3,4])
        self.C2V = inverse_rigid_trans(self.V2C)
        # Rotation from reference camera coord to rect camera coord
        self.R0 = calibs['R0_rect']
        self.R0 = np.reshape(self.R0,[3,3])

        # Camera intrinsics and extrinsics
        self.c_u = self.P[0,2]
        self.c_v = self.P[1,2]
        self.f_u = self.P[0,0]
        self.f_v = self.P[1,1]
        self.b_x = self.P[0,3]/(-self.f_u) # relative 
        self.b_y = self.P[1,3]/(-self.f_v)

    def read_calib_file(self, filepath):
        ''' Read in a calibration file and parse into a dictionary.
        Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
        '''
        data = {}
        with open(filepath, 'r') as f:
            for line in f.readlines():
                line = line.rstrip()
                if len(line)==0: continue
                key, value = line.split(':', 1)
                # The only non-float values in these files are dates, which
                # we don't care about anyway
                try:
                    data[key] = np.array([float(x) for x in value.split()])
                except ValueError:
                    pass

        return data
    
    def read_calib_from_video(self, calib_root_dir):
        ''' Read calibration for camera 2 from video calib files.
            there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir
        '''
        data = {}
        cam2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_cam_to_cam.txt'))
        velo2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_velo_to_cam.txt'))
        Tr_velo_to_cam = np.zeros((3,4))
        Tr_velo_to_cam[0:3,0:3] = np.reshape(velo2cam['R'], [3,3])
        Tr_velo_to_cam[:,3] = velo2cam['T']
        data['Tr_velo_to_cam'] = np.reshape(Tr_velo_to_cam, [12])
        data['R0_rect'] = cam2cam['R_rect_00']
        data['P2'] = cam2cam['P_rect_02']
        return data

    def cart2hom(self, pts_3d):
        ''' Input: nx3 points in Cartesian
            Oupput: nx4 points in Homogeneous by pending 1
        '''
        n = pts_3d.shape[0]
        pts_3d_hom = np.hstack((pts_3d, np.ones((n,1))))
        return pts_3d_hom
 
    # =========================== 
    # ------- 3d to 3d ---------- 
    # =========================== 
    def project_velo_to_ref(self, pts_3d_velo):
        pts_3d_velo = self.cart2hom(pts_3d_velo) # nx4
        return np.dot(pts_3d_velo, np.transpose(self.V2C))

    def project_ref_to_velo(self, pts_3d_ref):
        pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4
        return np.dot(pts_3d_ref, np.transpose(self.C2V))

    def project_rect_to_ref(self, pts_3d_rect):
        ''' Input and Output are nx3 points '''
        return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))
    
    def project_ref_to_rect(self, pts_3d_ref):
        ''' Input and Output are nx3 points '''
        return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))
 
    def project_rect_to_velo(self, pts_3d_rect):
        ''' Input: nx3 points in rect camera coord.
            Output: nx3 points in velodyne coord.
        ''' 
        pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)
        return self.project_ref_to_velo(pts_3d_ref)

    def project_velo_to_rect(self, pts_3d_velo):
        pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)
        return self.project_ref_to_rect(pts_3d_ref)

    # =========================== 
    # ------- 3d to 2d ---------- 
    # =========================== 
    def project_rect_to_image(self, pts_3d_rect):
        ''' Input: nx3 points in rect camera coord.
            Output: nx2 points in image2 coord.
        '''
        pts_3d_rect = self.cart2hom(pts_3d_rect)
        pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3
        pts_2d[:,0] /= pts_2d[:,2]
        pts_2d[:,1] /= pts_2d[:,2]
        return pts_2d[:,0:2]
    
    def project_velo_to_image(self, pts_3d_velo):
        ''' Input: nx3 points in velodyne coord.
            Output: nx2 points in image2 coord.
        '''
        pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)
        return self.project_rect_to_image(pts_3d_rect)

    # =========================== 
    # ------- 2d to 3d ---------- 
    # =========================== 
    def project_image_to_rect(self, uv_depth):
        ''' Input: nx3 first two channels are uv, 3rd channel
                   is depth in rect camera coord.
            Output: nx3 points in rect camera coord.
        '''
        n = uv_depth.shape[0]
        x = ((uv_depth[:,0]-self.c_u)*uv_depth[:,2])/self.f_u + self.b_x
        y = ((uv_depth[:,1]-self.c_v)*uv_depth[:,2])/self.f_v + self.b_y
        pts_3d_rect = np.zeros((n,3))
        pts_3d_rect[:,0] = x
        pts_3d_rect[:,1] = y
        pts_3d_rect[:,2] = uv_depth[:,2]
        return pts_3d_rect

    def project_image_to_velo(self, uv_depth):
        pts_3d_rect = self.project_image_to_rect(uv_depth)
        return self.project_rect_to_velo(pts_3d_rect)

 
def rotx(t):
    ''' 3D Rotation about the x-axis. '''
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[1,  0,  0],
                     [0,  c, -s],
                     [0,  s,  c]])


def roty(t):
    ''' Rotation about the y-axis. '''
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[c,  0,  s],
                     [0,  1,  0],
                     [-s, 0,  c]])


def rotz(t):
    ''' Rotation about the z-axis. '''
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[c, -s,  0],
                     [s,  c,  0],
                     [0,  0,  1]])


def transform_from_rot_trans(R, t):
    ''' Transforation matrix from rotation matrix and translation vector. '''
    R = R.reshape(3, 3)
    t = t.reshape(3, 1)
    return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))


def inverse_rigid_trans(Tr):
    ''' Inverse a rigid body transform matrix (3x4 as [R|t])
        [R'|-R't; 0|1]
    '''
    inv_Tr = np.zeros_like(Tr) # 3x4
    inv_Tr[0:3,0:3] = np.transpose(Tr[0:3,0:3])
    inv_Tr[0:3,3] = np.dot(-np.transpose(Tr[0:3,0:3]), Tr[0:3,3])
    return inv_Tr

def read_label(label_filename):
    lines = [line.rstrip() for line in open(label_filename)]
    objects = [Object3d(line) for line in lines]
    return objects

def load_image(img_filename):
    return cv2.imread(img_filename)

def load_velo_scan(velo_filename):
    scan = np.fromfile(velo_filename, dtype=np.float32)
    scan = scan.reshape((-1, 4))
    return scan

def project_to_image(pts_3d, P):
    ''' Project 3d points to image plane.
    Usage: pts_2d = projectToImage(pts_3d, P)
      input: pts_3d: nx3 matrix
             P:      3x4 projection matrix
      output: pts_2d: nx2 matrix
      P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
      => normalize projected_pts_2d(2xn)
      <=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
          => normalize projected_pts_2d(nx2)
    '''
    n = pts_3d.shape[0]
    pts_3d_extend = np.hstack((pts_3d, np.ones((n,1))))
    print(('pts_3d_extend shape: ', pts_3d_extend.shape))
    pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # nx3
    pts_2d[:,0] /= pts_2d[:,2]
    pts_2d[:,1] /= pts_2d[:,2]
    return pts_2d[:,0:2]


def compute_box_3d(obj, P):
    ''' Takes an object and a projection matrix (P) and projects the 3d
        bounding box into the image plane.
        Returns:
            corners_2d: (8,2) array in left image coord.
            corners_3d: (8,3) array in in rect camera coord.
    '''
    # compute rotational matrix around yaw axis
    R = roty(obj.ry)    

    # 3d bounding box dimensions
    l = obj.l;
    w = obj.w;
    h = obj.h;
    
    # 3d bounding box corners
    x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];
    y_corners = [0,0,0,0,-h,-h,-h,-h];
    z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];
    
    # rotate and translate 3d bounding box
    corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))
    #print corners_3d.shape
    corners_3d[0,:] = corners_3d[0,:] + obj.t[0];
    corners_3d[1,:] = corners_3d[1,:] + obj.t[1];
    corners_3d[2,:] = corners_3d[2,:] + obj.t[2];
    #print 'cornsers_3d: ', corners_3d 
    # only draw 3d bounding box for objs in front of the camera
    if np.any(corners_3d[2,:]<0.1):
        corners_2d = None
        return corners_2d, np.transpose(corners_3d)
    
    # project the 3d bounding box into the image plane
    corners_2d = project_to_image(np.transpose(corners_3d), P);
    #print 'corners_2d: ', corners_2d
    return corners_2d, np.transpose(corners_3d)


def compute_orientation_3d(obj, P):
    ''' Takes an object and a projection matrix (P) and projects the 3d
        object orientation vector into the image plane.
        Returns:
            orientation_2d: (2,2) array in left image coord.
            orientation_3d: (2,3) array in in rect camera coord.
    '''
    
    # compute rotational matrix around yaw axis
    R = roty(obj.ry)
   
    # orientation in object coordinate system
    orientation_3d = np.array([[0.0, obj.l],[0,0],[0,0]])
    
    # rotate and translate in camera coordinate system, project in image
    orientation_3d = np.dot(R, orientation_3d)
    orientation_3d[0,:] = orientation_3d[0,:] + obj.t[0]
    orientation_3d[1,:] = orientation_3d[1,:] + obj.t[1]
    orientation_3d[2,:] = orientation_3d[2,:] + obj.t[2]
    
    # vector behind image plane?
    if np.any(orientation_3d[2,:]<0.1):
      orientation_2d = None
      return orientation_2d, np.transpose(orientation_3d)
    
    # project orientation into the image plane
    orientation_2d = project_to_image(np.transpose(orientation_3d), P);
    return orientation_2d, np.transpose(orientation_3d)

def draw_projected_box3d(image, qs, color=(255,255,255), thickness=2):
    ''' Draw 3d bounding box in image
        qs: (8,3) array of vertices for the 3d box in following order:
            1 -------- 0
           /|         /|
          2 -------- 3 .
          | |        | |
          . 5 -------- 4
          |/         |/
          6 -------- 7
    '''
    qs = qs.astype(np.int32)
    for k in range(0,4):
       # Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
       i,j=k,(k+1)%4
       # use LINE_AA for opencv3
       cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)

       i,j=k+4,(k+1)%4 + 4
       cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)

       i,j=k,k+4
       cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
    return image
           

p15_kitti.py:

#!/usr/bin/env python
# -*- coding:utf8 -*-

from data_utils import *
from publish_utils import *
from kitti_utils import * #kitti_utils.py檔案有報錯,但是不影響運作

DATA_PATH='/home/ylh/data/kitti/RawData/2011_09_26/2011_09_26_drive_0005_sync'

#3d偵測盒生成函數
#以特殊情況為例,當rot_y=0時,(pos_x,pos_y,pos_z)就是位于偵測盒的下方平面的中心點
#根據資料中的長寬,可以擷取下方平面的四角坐标,然後根據高資料,進而擷取偵測盒的八個點的坐标
#對于rot_y!=0情況,需要每個點乘以一個旋轉矩陣(對相機坐标系中的y軸進行旋轉),那麼就可以得到
#帶有rot_y!=0也就是yaw非0情況,8個頂點坐标(yaw=0情況時)乘以旋轉矩陣,可得到新的8個頂點坐标
def compute_3d_box_cam2(h,w,l,x,y,z,yaw):
    #return:3xn in can2 coordinate
    #rot_y!=0時的旋轉矩陣
    R = np.array([[np.cos(yaw),0,np.sin(yaw)],[0,1,0],[-np.sin(yaw),0,np.cos(yaw)]])
    #8個頂點所對應的xyz坐标(rot_y=0時)
    x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]
    y_corners = [0,0,0,0,-h,-h,-h,-h]
    z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]
    #做旋轉,rot_y=0可視為旋轉特例,隻不過角度為0而已,然後,讓8個頂點坐标與旋轉矩陣相乘
    corners_3d_cam2 = np.dot(R,np.vstack([x_corners,y_corners,z_corners]))
    #由于以下方中心點做旋轉的,是以,需要加上該旋轉中心點坐标(x,y,z)
    corners_3d_cam2 += np.vstack([x,y,z])
    return corners_3d_cam2#傳回偵測盒8個頂點在相機坐标系中的坐标
 

if __name__=='__main__':
    frame = 0
    rospy.init_node('kitti_node',anonymous=True)
    cam_pub=rospy.Publisher('kitti_cam',Image,queue_size=10)#建立釋出圖檔topic
    pcl_pub=rospy.Publisher('kitti_point_cloud',PointCloud2,queue_size=10)#建立釋出點雲topic
    #ego_pub=rospy.Publisher('kitti_ego_car',Marker,queue_size=10)#建立釋出訓示線marker的topic
    ego_pub=rospy.Publisher('kitti_ego_car',MarkerArray,queue_size=10)#MarkerArray方式釋出
    #model_pub=rospy.Publisher('kitti_car_model',Marker,queue_size=10)#建立釋出車子模型的marker的topic
    imu_pub=rospy.Publisher('kitti_imu',Imu,queue_size=10)#建立釋出imu資料的topic
    gps_pub=rospy.Publisher('kitti_gps',NavSatFix,queue_size=10)#建立釋出gps資料的topic,NavSatFix,ros裡面固定衛星偵測資料包
    box3d_pub=rospy.Publisher('kitti_3d',MarkerArray,queue_size=10)#建立釋出偵測盒的topic

    bridge=CvBridge()

    rate=rospy.Rate(10)

    #讀取tracking資料
    df_tracking=read_tracking('/home/ylh/data/kitti/training/label_02/0000.txt')
    
    #讀取坐标轉換檔案,from_video=True表示會讀取路徑中三個.txt坐标轉換檔案
    calib = Calibration('/home/ylh/data/kitti/RawData/2011_09_26/',from_video=True)

    while not rospy.is_shutdown():
        #将tracking資料的繪制框框所需資料篩選并處理
        df_tracking_frame = df_tracking[df_tracking.frame==frame]
        boxes_2d = np.array(df_tracking_frame[['bbox_left','bbox_top','bbox_right','bbox_bottom']])#擷取tracking資料第frame幀圖檔中的box們對應的四邊坐标
        types=np.array(df_tracking_frame['type'])#讀取tracking資料第frame幀圖檔中的物體種類類型并儲存到tpyes數組中
        #讀取tracking裡面偵測盒參數
        boxes_3d = np.array(df_tracking_frame[['height','width','length','pos_x','pos_y','pos_z','rot_y']])
        #擷取track_id
        track_ids = np.array(df_tracking_frame['track_id'])#将讀取的track_id儲存成一個數組
        
        corners_3d_velos = []#存放偵測盒8個頂點資料
        for box_3d in boxes_3d:#根據資料生成所有偵測盒
            corners_3d_cam2 = compute_3d_box_cam2(*box_3d)#由于該函數有7個參數,是以使用星号自動展開;計算擷取偵測盒8個頂點坐标
            corners_3d_velo = calib.project_rect_to_velo(corners_3d_cam2.T)#把8個頂點,從相機坐标系裝換到雷達坐标系
            corners_3d_velos += [corners_3d_velo]#存放所有偵測盒8頂點資料
        
        #讀取圖檔
        image=read_camera(os.path.join(DATA_PATH,'image_02/data/%010d.png'%frame))
        
        #釋出圖檔
        #publish_camera(cam_pub,bridge,image)
        publish_camera(cam_pub,bridge,image,boxes_2d,types)#增加參數boxes,types,為了給圖檔指定類型繪制框框     
        
        #讀取點雲
        point_clond=read_point_cloud(os.path.join(DATA_PATH,'velodyne_points/data/%010d.bin'%frame))

        #釋出點雲
        publish_point_cloud(pcl_pub,point_clond)

        #釋出訓示線marker;由于不需要讀取資料,是以直接釋出即可
        #當采用markerarray釋出方式,則車子和訓示線都放在這個topic
        #進行釋出即可。故下面的釋出車子模型marker可以删除。這樣子,可以解決不同marker釋出不同步問題
        publish_ego_car(ego_pub)

        #釋出車子模型marker;由于不需要讀取資料,是以直接釋出即可
        #publish_car_model(model_pub)

        #讀取imu資料,這裡也包含了gps資料了
        imu_data=read_imu(os.path.join(DATA_PATH,'oxts/data/%010d.txt'%frame))

        #釋出imu資料
        publish_imu(imu_pub,imu_data)

        #釋出gps資料
        publish_gps(gps_pub,imu_data)

        #釋出偵測盒
        #publish_3dbox(box3d_pub,corners_3d_velos)#偵測盒顔色一緻寫法
        #publish_3dbox(box3d_pub,corners_3d_velos,types) #增加偵測盒類型不同而不一樣寫法
        publish_3dbox(box3d_pub,corners_3d_velos,types,track_ids) #增加傳遞track_id
        
        #釋出
        rospy.loginfo("published")
        rate.sleep()
        frame+=1
        frame%=154
           

3、效果

kitti之ros可視化_學習筆記--第10課:添加id到3d偵測盒上方

物體3d偵測盒上方出現數字,則表示顯示id成功。

至此,kitti資料集的3d偵測盒的id顯示操作完成~

#####################

學習課程來源up主,AI葵:

https://www.youtube.com/watch?v=TBdcwwr5Wyk

緻謝AI葵老師

不積矽步,無以至千裡

好記性不如爛筆頭

感覺有點收獲的話,麻煩大大們點贊收藏哈

繼續閱讀