U-Net,主要是針對生物醫學圖檔的分割

model_part
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
# Conv = > Batch_Norm = > ReLU = > Conv2d = > Batch_Norm = > ReLU
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=0),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.double_conv(x)
return x
class Down(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=False):
super().__init__()
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(out_channels * 2, out_channels)
def Cropsize(self, x1, x2):
dix = (x2.size()[2] - x1.size()[2]) // 2
diy = (x2.size()[3] - x1.size()[3]) // 2
print('\n')
print('dix:', dix)
print('diy:', diy)
return x2[:, :, dix:(dix + x1.size()[2]), diy:(diy + x1.size()[3])]
def forward(self, x1, x2):
# 四維batch, channel, height, width
x1 = self.up(x1)
crop = self.Cropsize(x1, x2)
x = torch.cat([x1, crop], dim=1) # channel上cat,
print(x.size())
x = self.conv(x)
return x
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
model
from unet.model_part import *
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 1024)
self.up1 = Up(1024, 512, False)
self.up2 = Up(512, 256, False)
self.up3 = Up(256, 128, False)
self.up4 = Up(128, 64, False)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
x = torch.rand(size=(2, 3, 572, 572)) # 電腦資源有限batch隻能設小一些哈
unet = UNet(3, 10)
print(unet)
out = unet(x)