天天看點

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

基本思想

俗話說“物以類聚、人以群分”,拿看電影這個例子來說,如果你喜歡《蝙蝠俠》、《碟中諜》、《星際穿越》、《源代碼》等電影,另外有個人也都喜歡這些電影,而且他還喜歡《鋼鐵俠》,則很有可能你也喜歡《鋼鐵俠》這部電影。

是以說,當一個使用者 A 需要個性化推薦時,可以先找到和他興趣相似的使用者群體 G,然後把 G 喜歡的、并且 A 沒有聽說過的物品推薦給 A,這就是基于使用者的系統過濾算法。

原理

根據上述基本原理,我們可以将基于使用者的協同過濾推薦算法拆分為兩個步驟:

  1. 找到與目标使用者興趣相似的使用者集合
  2. 找到這個集合中使用者喜歡的、并且目标使用者沒有聽說過的物品推薦給目标使用者

1、發現興趣相似的使用者

通常用 Jaccard 公式或者餘弦相似度計算兩個使用者之間的相似度。設 N(u) 為使用者 u 喜歡的物品集合,N(v) 為使用者 v 喜歡的物品集合,那麼 u 和 v 的相似度是多少呢:

Jaccard 公式:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

餘弦相似度:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

假設目前共有4個使用者: A、B、C、D;共有5個物品:a、b、c、d、e。使用者與物品的關系(使用者喜歡物品)如下圖所示:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

如何一下子計算所有使用者之間的相似度呢?為計算友善,通常首先需要建立“物品—使用者”的倒排表,如下圖所示:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

然後對于每個物品,喜歡他的使用者,兩兩之間相同物品加1。例如喜歡物品 a 的使用者有 A 和 B,那麼在矩陣中他們兩兩加1。如下圖所示:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

計算使用者兩兩之間的相似度,上面的矩陣僅僅代表的是公式的分子部分。以餘弦相似度為例,對上圖進行進一步計算:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

到此,計算使用者相似度就大功告成,可以很直覺的找到與目标使用者興趣較相似的使用者。

2、推薦物品

首先需要從矩陣中找出與目标使用者 u 最相似的 K 個使用者,用集合 S(u, K) 表示,将 S 中使用者喜歡的物品全部提取出來,并去除 u 已經喜歡的物品。對于每個候選物品 i ,使用者 u 對它感興趣的程度用如下公式計算:

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

其中 rvi 表示使用者 v 對 i 的喜歡程度,因為使用的是單一行為的隐回報資料,在本例中 rvi 都是為 1,在一些需要使用者給予評分的推薦系統中,則要代入使用者評分。

舉個例子,假設我們要給 A 推薦物品,選取 K = 3 個相似使用者,相似使用者則是:B、C、D,那麼他們喜歡過并且 A 沒有喜歡過的物品有:c、e,那麼分别計算 p(A, c) 和 p(A, e):

基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)
基于使用者的協同過濾算法基本思想原理python代碼data另一份代碼(手撸過的)

看樣子使用者 A 對 c 和 e 的喜歡程度可能是一樣的,在真實的推薦系統中,隻要按得分排序,取前幾個物品就可以了。

python代碼

# -*- coding: utf-8 -*-
"""
Created on Wed Oct 24 17:07:29 2018
@author: Administrator
"""
 
import random
import math
class UserBasedCF:
    def __init__(self,datafile = None):
        self.datafile = datafile
        self.readData()
        self.splitData(3,47)
    def readData(self,datafile = None):
        """
        read the data from the data file which is a data set
        """
        self.datafile = datafile or self.datafile
        self.data = []
        for line in open(self.datafile):
            userid,itemid,record,_ = line.split()
            self.data.append((userid,itemid,int(record)))
    def splitData(self,k,seed,data=None,M = 8):
        """
        split the data set
        testdata is a test data set
        traindata is a train set 
        test data set : train data set = 1:M-1
        """
        self.testdata = {}
        self.traindata = {}
        data = data or self.data
        random.seed(seed)
        for user,item, record in self.data:
            if random.randint(0,M) == k:
                self.testdata.setdefault(user,{})
                self.testdata[user][item] = record 
            else:
                self.traindata.setdefault(user,{})
                self.traindata[user][item] = record
    def userSimilarity(self,train = None):
        """
        One method of getting user similarity matrix
        """
        train = train or self.traindata
        self.userSim = dict()
        for u in train.keys():
            for v in train.keys():
                if u == v:
                    continue
                self.userSim.setdefault(u,{})
                self.userSim[u][v] = len(set(train[u].keys()) & set(train[v].keys()))
                self.userSim[u][v] /=math.sqrt(len(train[u]) * len(train[v]) *1.0)
    def userSimilarityBest(self,train = None):
        """
        the other method of getting user similarity which is better than above
        you can get the method on page 46
        In this experiment,we use this method
        """
        train = train or self.traindata
        self.userSimBest = dict()
        item_users = dict()
        for u,item in train.items():
            for i in item.keys():
                item_users.setdefault(i,set())
                item_users[i].add(u)
        user_item_count = dict()
        count = dict()
        for item,users in item_users.items():
            for u in users:
                user_item_count.setdefault(u,0)
                user_item_count[u] += 1
                for v in users:
                    if u == v:continue
                    count.setdefault(u,{})
                    count[u].setdefault(v,0)
                    count[u][v] += 1
        for u ,related_users in count.items():
            self.userSimBest.setdefault(u,dict())
            for v, cuv in related_users.items():
                self.userSimBest[u][v] = cuv / math.sqrt(user_item_count[u] * user_item_count[v] * 1.0)
 
    def recommend(self,user,train = None,k = 8,nitem = 40):
        train = train or self.traindata
        rank = dict()
        interacted_items = train.get(user,{})
        for v ,wuv in sorted(self.userSimBest[user].items(),key = lambda x : x[1],reverse = True)[0:k]:
            for i , rvi in train[v].items():
                if i in interacted_items:
                    continue
                rank.setdefault(i,0)
                rank[i] += wuv * rvi
        return dict(sorted(rank.items(),key = lambda x :x[1],reverse = True)[0:nitem])
    def recallAndPrecision(self,train = None,test = None,k = 8,nitem = 10):
        """
        Get the recall and precision, the method you want to know is listed 
        in the page 43
        """
        train  = train or self.traindata
        test = test or self.testdata
        hit = 0
        recall = 0
        precision = 0
        for user in train.keys():
            tu = test.get(user,{})
            rank = self.recommend(user, train = train,k = k,nitem = nitem) 
            for item,_ in rank.items():
                if item in tu:
                    hit += 1
            recall += len(tu)
            precision += nitem
        return (hit / (recall * 1.0),hit / (precision * 1.0))
    def coverage(self,train = None,test = None,k = 8,nitem = 10):
        train = train or self.traindata
        test = test or self.testdata
        recommend_items = set()
        all_items  = set()
        for user in train.keys():
            for item in train[user].keys():
                all_items.add(item)
            rank = self.recommend(user, train, k = k, nitem = nitem)
            for item,_ in rank.items():
                recommend_items.add(item)
        return len(recommend_items) / (len(all_items) * 1.0)
    def popularity(self,train = None,test = None,k = 8,nitem = 10):
        """
        Get the popularity
        the algorithm on page 44
        """
        train = train or self.traindata
        test = test or self.testdata
        item_popularity = dict()
        for user ,items in train.items():
            for item in items.keys():
                item_popularity.setdefault(item,0)
                item_popularity[item] += 1
        ret = 0
        n = 0
        for user in train.keys():
            rank = self.recommend(user, train, k = k, nitem = nitem)
            for item ,_ in rank.items():
                ret += math.log(1+item_popularity[item])
                n += 1
        return ret / (n * 1.0)
     
def testRecommend():
    ubcf = UserBasedCF('data.txt')
    ubcf.readData()
    ubcf.splitData(4,100)
    ubcf.userSimilarity()
    user = "345"
    rank = ubcf.recommend(user,k = 3)
    for i,rvi in rank.items():
        items = ubcf.testdata.get(user,{})
        record = items.get(i,0)
        print ("%5s: %.4f--%.4f" %(i,rvi,record))
def testUserBasedCF():
    cf  =  UserBasedCF('data.txt')
    cf.userSimilarityBest()
    print ("%3s%20s%20s%20s%20s" % ('K',"recall",'precision','coverage','popularity'))
    for k in [5,10,20,40,80,160]:
        recall,precision = cf.recallAndPrecision( k = k)
        coverage = cf.coverage(k = k)
        popularity = cf.popularity(k = k)
        print ("%3d%19.3f%%%19.3f%%%19.3f%%%20.3f" % (k,recall * 100,precision * 100,coverage * 100,popularity))
         
if __name__ == "__main__":
    testUserBasedCF()
           

data

1 111 2.5
1 222 3.5
1 333 3.0
1 444 3.5
1 555 2.5
1 666 3.0
2 111 3.0
2 222 3.5
2 333 1.5
2 444 5.0
2 666 3.0
2 555 3.5
3 111 2.5
3 222 3.0
3 444 3.5
3 666 4.0
4 222 3.5
4 333 3.0
4 666 4.5
4 444 4.0
4 555 2.5
5 111 3.0
5 222 4.0
5 333 2.0
5 444 3.0
5 666 3.0
5 555 2.0
6 111 3.0
6 222 4.0
6 666 3.0
6 444 5.0
6 555 3.5
7 222 4.5
7 555 1.0
7 444 4.0
           

另一份代碼(手撸過的)

def read_data(filename):
    """
    從檔案中讀取資料
    """
    data = []
    for line in open(filename):
        userid, itemid, record = line.split()
        data.append([userid, itemid, float(record)])
    print('data:', data)
    return data

import random
def split_data(M, K, seed, data):
    """
    M:将資料集分為多少分
    K:[0,M]之間的随機整數
    seed:種子,随意
    data:待劃分資料集
    """
    traindata = {}
    testdata = {}
    random.seed(seed)
    for user, item, record in data:
        if random.randint(0, M) == K:
            testdata.setdefault(user, {})
            testdata[user][item] = record
        else:
            traindata.setdefault(user, {})
            traindata[user][item] = record
    return traindata, testdata

import math
def UserSimilarity_1(train):
    """
    計算使用者之間的相似度
    """
    W = {}
    for u in train.keys():
        for v in train.keys():
            if u == v: continue
            W.setdefault(u, {})
            W[u][v] = len(set(train[u].keys()) & set(train[v].keys()))
            W[u][v] /= math.sqrt(len(train[u]) * len(train[v] * 1.0))
    return W

def UserSimilarity_2(train):
    """
    建立物品使用者倒排表
    """
    item_users = {}
    for u, items in train.items():
        for i in items.keys():
            if i not in item_users: item_users.setdefault(i, set())
            item_users[i].add(u)
            
    """
    建立稀疏矩陣C[u][v]
    """
    C = {}
    N = {}
    for item, users in item_users.items():
        for u in users:
            N.setdefault(u, 0)
            N[u] += 1
            for v in users:
                if u == v: continue
                C.setdefault(u, {})
                C[u].setdefault(v, 0)
                C[u][v] += 1
    print('N:', N)
    print('C:', C)
    """
    計算相似度矩陣
    """
    W = {}
    for u, related_users in C.items():
        W.setdefault(u, {})
        for v, cuv in related_users.items():
            W[u][v] = cuv / math.sqrt(N[u] * N[v])
    print('W:', W)
    return W

from operator import itemgetter
def recommend(user, train, W, k, nitem):
    """
    user:給user推薦物品
    train:訓練集
    W:相似度矩陣
    k:推薦k個相似使用者
    nitem:推薦nitem個物品
    """
    rank = {}
    interacted_items = train[user].keys()
    for v, wuv in sorted(W[user].items(), key = itemgetter(1), reverse = True)[0:k]:
        for i, rvi in train[v].items():
            if i in interacted_items: continue
            rank.setdefault(i, 0)
            rank[i] += wuv * rvi
    print('rank', dict(sorted(rank.items(), key = itemgetter(1), reverse = True)[0:nitem]))        
    return dict(sorted(rank.items(), key = itemgetter(1), reverse = True)[0:nitem])

def recall_and_precision(train, test, k, nitem):
    """
    召回率和精度
    """
    hit = 0
    recall = 0
    precision = 0
    for user in train.keys():
        tu = test[user]
        rank = recommend(user, train, k, nitem)
        for item, pui in rank.items():
            if item in tu: hit += 1
        recall += len(tu)
        precision += nitem
    return (hit / (recall * 1.0)), (hit / (precision * 1.0))

def coverage(train, test, k, nitem):
    """
    覆寫率
    """
    recommend_items = set()
    all_items = set()
    for user in train.keys():
        for item in train[user].keys():
            all_items.add(item)
        rank = recommend(user, train, k, nitem)
        for item in rank.keys():
            recommend_items.add(item)
    return len(recommend_items) / (len(all_items) * 1.0)

def popularity(train, test, k, nitem):
    """
    新穎度
    """
    item_popularity = {}
    for user, items in train.items():
        for item in items.keys():
            if item not in item_popularity: item_popularity.setdefault(item, 0)
            item_popularity[item] += 1
    ret = 0
    n = 0
    for user in train.keys():
        rank = recommend(user, train, k, nitem)
        for item in rank.keys():
            ret += math.log(1 + item_popularity[item])
            n += 1
    ret /= n * 1.0
    return ret

if __name__=='__main__':
    data = read_data('data.txt')
    print('\n')
    train, test = split_data(8, 2, 1, data)
    print('\n')
    W = UserSimilarity_2(train)
    print('\n')
    rank = recommend('6', train, W, 3, 5)
           
('data:', [['1', '111', 2.5], ['1', '222', 3.5], ['1', '333', 3.0], ['1', '444', 3.5], ['1', '555', 2.5], ['1', '666', 3.0], ['2', '111', 3.0], ['2', '222', 3.5], ['2', '333', 1.5], ['2', '444', 5.0], ['2', '666', 3.0], ['2', '555', 3.5], ['3', '111', 2.5], ['3', '222', 3.0], ['3', '444', 3.5], ['3', '666', 4.0], ['4', '222', 3.5], ['4', '333', 3.0], ['4', '666', 4.5], ['4', '444', 4.0], ['4', '555', 2.5], ['5', '111', 3.0], ['5', '222', 4.0], ['5', '333', 2.0], ['5', '444', 3.0], ['5', '666', 3.0], ['5', '555', 2.0], ['6', '111', 3.0], ['6', '222', 4.0], ['6', '666', 3.0], ['6', '444', 5.0], ['6', '555', 3.5], ['7', '222', 4.5], ['7', '555', 1.0], ['7', '444', 4.0]])

('N:', {'1': 5, '3': 4, '2': 6, '5': 6, '4': 4, '7': 2, '6': 3})

('C:', {'1': {'3': 3, '2': 5, '5': 5, '4': 3, '7': 2, '6': 3}, '3': {'1': 3, '2': 4, '5': 4, '4': 2, '7': 1, '6': 3}, '2': {'1': 5, '3': 4, '5': 6, '4': 4, '7': 2, '6': 3}, '5': {'1': 5, '3': 4, '2': 6, '4': 4, '7': 2, '6': 3}, '4': {'1': 3, '3': 2, '2': 4, '5': 4, '7': 1, '6': 1}, '7': {'1': 2, '3': 1, '2': 2, '5': 2, '4': 1, '6': 1}, '6': {'1': 3, '3': 3, '2': 3, '5': 3, '4': 1, '7': 1}})

('W:', {'1': {'3': 0.6708203932499369, '2': 0.9128709291752769, '5': 0.9128709291752769, '4': 0.6708203932499369, '7': 0.6324555320336759, '6': 0.7745966692414834}, '3': {'1': 0.6708203932499369, '2': 0.8164965809277261, '5': 0.8164965809277261, '4': 0.5, '7': 0.35355339059327373, '6': 0.8660254037844387}, '2': {'1': 0.9128709291752769, '3': 0.8164965809277261, '5': 1.0, '4': 0.8164965809277261, '7': 0.5773502691896258, '6': 0.7071067811865476}, '5': {'1': 0.9128709291752769, '3': 0.8164965809277261, '2': 1.0, '4': 0.8164965809277261, '7': 0.5773502691896258, '6': 0.7071067811865476}, '4': {'1': 0.6708203932499369, '3': 0.5, '2': 0.8164965809277261, '5': 0.8164965809277261, '7': 0.35355339059327373, '6': 0.2886751345948129}, '7': {'1': 0.6324555320336759, '3': 0.35355339059327373, '2': 0.5773502691896258, '5': 0.5773502691896258, '4': 0.35355339059327373, '6': 0.4082482904638631}, '6': {'1': 0.7745966692414834, '3': 0.8660254037844387, '2': 0.7071067811865476, '5': 0.7071067811865476, '4': 0.2886751345948129, '7': 0.4082482904638631}})

('rank', {'555': 4.411365407256625, '333': 3.3844501795042716, '444': 6.566622819178273})
           

繼續閱讀