1015. Reversible Primes (20)
原題連結
A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
題目大意:
- 可逆素數判斷:一個十進制數 N 在 D進制 下反轉後的十進制數仍為素數,則為可逆素數
- 注意前後均為十進制,隻是在D進制下反轉
代碼:
#include <iostream>
using namespace std;
bool isPrime(int n){
if(n <= )
return false;
for(int i=; i*i<=n; i++){
if(n%i == )
return false;
}
return true;
}
int main()
{
bool flag = true;
int n, d;
while(flag){
cin >> n;
if(n < )
break;
cin >> d;//進制
if(isPrime(n) == false){
cout << "No" << endl;
continue;
}
int revers = ;//D進制下反轉後的數
while(n != ){//D進制下反轉
int temp = n%d;
revers = revers*d + temp;
n /= d;
}
if(isPrime(revers) == false){
cout << "No" << endl;
}else{
cout << "Yes" << endl;
}
}
return ;
}