一、數字圖像處理簡介
圖像處理基礎教程連結
1 【基礎教程】基于matlab圖像處理(表示方法+資料結構+基本格式+類型轉換+讀取+點運算+代數運算)【含Matlab源碼 834期】
2 【基礎教程】基于matlab圖像處理(讀寫+顯示+運算+轉換+變換+增強+濾波+分析+統計)【含Matlab源碼 144期】
3 【基礎教程】基于matlab圖像增強+複原+分割【含Matlab源碼 056期】
二、部分源代碼
function compareimages(A,ATitle,B,BTitle)
%COMPAREIMAGES Displays two images side by side with linked axes
% COMPAREIMAGES(A,B) displays images A and B, where A and B are either
% grayscale or RGB color images with values in [0,1]. The images are
% displayed with linked axes for convenient panning and zooming.
%
% COMPAREIMAGES(A,'A title',B,'B title') specifies titles above the
% images.
%
% See also linkaxes.
% Pascal Getreuer 2009
if nargin == 2
B = ATitle;
ATitle = '';
BTitle = '';
elseif nargin < 4
error('Must have 2 or 4 input arguments.');
end
ax(1) = subplot(1,2,1);
hold off
if ndims(A) == 2
image(A*255);
colormap(gray(256));
elseif ndims(A) == 3
image(min(max(A,0),1));
end
set(gca,'Units','Normalized','Position',[0,0.1,0.5,0.8]);
axis image
axis off
title(ATitle);
zoom;
ax(2) = subplot(1,2,2);
hold off
if ndims(B) == 2
image(B*255);
colormap(gray(256));
elseif ndims(B) == 3
image(min(max(B,0),1));
end
set(gca,'Units','Normalized','Position',[0.5,0.1,0.5,0.8]);
axis image
axis off
title(BTitle);
%%% Demo of image deconvolution %%%
BlurRadius = 3;
NoiseLevel = 0.005;
lambda = 4e3;
uexact = double(imread('einstein.png'))/255;
% Construct the blur filter
[x,y] = meshgrid(1:size(uexact,2),1:size(uexact,1));
psf = double((x-size(uexact,2)/2).^2 ...
+ (y-size(uexact,1)/2).^2 <= BlurRadius^2);
psf = psf/sum(psf(:));
% Simulate a noisy and blurry image
f = real(ifft2(fft2(uexact).*fft2(fftshift(psf))));
f = f + randn(size(uexact))*NoiseLevel;
% Deblur
u = tvdeconv(f,lambda,psf);unction u = tvdenoise(f,lambda,varargin)
%TVDENOISE Total variation image denoising.
% u = TVDENOISE(f,lambda,model) denoises grayscale, color, or arbitrary
% multichannel image f using total variation regularization. Parameter
% lambda controls the strength of the noise reduction: smaller lambda
% implies stronger denoising.
%
% The model parameter specifies the noise model (case insensitive):
% 'Gaussian' or 'L2' - (default) The degradation model for additive
% white Gaussian noise (AWGN),
% f = (exact) + (Gaussian noise).
% 'Laplacian' or 'L1' - The degradation model assumes impulsive noise,
% for example, salt & pepper noise.
% 'Poisson' - Each pixel is an independent Poisson random
% variable with mean equal to the exact value.
%
% TVDENOISE(...,Tol,MaxIter) specify the stopping tolerance and the
% maximum number of iterations.
%
% See also tvdeconv, tvinpaint, and tvrestore.
三、運作結果

四、matlab版本及參考文獻
1 matlab版本
2014a
2 參考文獻
[1] 蔡利梅.MATLAB圖像處理——理論、算法與執行個體分析[M].清華大學出版社,2020.
[2]楊丹,趙海濱,龍哲.MATLAB圖像處理執行個體詳解[M].清華大學出版社,2013.
[3]周品.MATLAB圖像處理與圖形使用者界面設計[M].清華大學出版社,2013.
[4]劉成龍.精通MATLAB圖像處理[M].清華大學出版社,2015.
[5]陳浩,方勇,朱大洲,王成,陳子龍.基于蟻群算法的玉米植株熱紅外圖像邊緣檢測[J].農機化研究. 2015,37(06)