文章目錄
- 1. 資料準備
- 2. 相關代碼
- 3. 結果展示
1. 資料準備
- 遙感影像
-
n個shp檔案(n為類别數,其中包括背景類)
截圖如下
基于遙感影像的随機森林多分類應用示例(python) - 點矢量截圖
基于遙感影像的随機森林多分類應用示例(python)
2. 相關代碼
# -*- coding: utf-8 -*-
import os, sys, time
import gdal
from osgeo import ogr
from osgeo import gdal
from osgeo import gdal_array as ga
from gdalconst import *
from skimage import morphology, filters
import numpy as np
from numba import jit, vectorize, int64
import warnings
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.ensemble import ExtraTreesClassifier
def read_img(filename):
dataset = gdal.Open(filename)
im_width = dataset.RasterXSize
im_height = dataset.RasterYSize
im_geotrans = dataset.GetGeoTransform()
im_proj = dataset.GetProjection()
im_data = dataset.ReadAsArray(0, 0, im_width, im_height)
del dataset
return im_proj, im_geotrans, im_width, im_height, im_data
def write_img(filename, im_proj, im_geotrans, im_data):
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1, im_data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans)
dataset.SetProjection(im_proj)
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data)
else:
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
def getPixels(shp, img):
driver = ogr.GetDriverByName('ESRI Shapefile')
ds = driver.Open(shp, 0)
if ds is None:
print('Could not open ' + shp)
sys.exit(1)
layer = ds.GetLayer()
xValues = []
yValues = []
feature = layer.GetNextFeature()
while feature:
geometry = feature.GetGeometryRef()
x = geometry.GetX()
y = geometry.GetY()
xValues.append(x)
yValues.append(y)
feature = layer.GetNextFeature()
gdal.AllRegister()
ds = gdal.Open(img, GA_ReadOnly)
if ds is None:
print('Could not open image')
sys.exit(1)
rows = ds.RasterYSize
cols = ds.RasterXSize
bands = ds.RasterCount
transform = ds.GetGeoTransform()
xOrigin = transform[0]
yOrigin = transform[3]
pixelWidth = transform[1]
pixelHeight = transform[5]
values = []
for i in range(len(xValues)):
x = xValues[i]
y = yValues[i]
xOffset = int((x - xOrigin) / pixelWidth)
yOffset = int((y - yOrigin) / pixelHeight)
s = str(int(x)) + ' ' + str(int(y)) + ' ' + str(xOffset) + ' ' + str(yOffset) + ' '
dt = ds.ReadAsArray(xOffset, yOffset, 1, 1)
values.append(dt.flatten())
return values
def array_change(inlist, outlist):
for i in range(len(inlist[0])):
outlist.append([j[i] for j in inlist])
return outlist
def array_change2(inlist, outlist):
for ele in inlist:
for ele2 in ele:
outlist.append(ele2)
return outlist
def random_test(img_path, point_path, save_path):
class_list = []
label_list = []
count = 0
for shp in os.listdir(point_path):
if shp[-4:] == '.shp':
shp_full_path = os.path.join(point_path, shp)
class_type = getPixels(shp_full_path, img_path)
class_list += class_type
label_list += [count] * len(class_type)
count += 1
arr = np.array(class_list)
label = np.array(label_list)
im_proj, im_geotrans, im_width, im_height, im_data = read_img(img_path)
im_data = im_data.transpose((2, 1, 0))
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
clf.fit(arr, label)
img_arr_temp = im_data
img_reshape = img_arr_temp.reshape([img_arr_temp.shape[0] * img_arr_temp.shape[1], img_arr_temp.shape[2]])
seg = clf.predict(img_reshape)
re = seg.reshape((img_arr_temp.shape[0], img_arr_temp.shape[1]))
re = re.transpose((1, 0))
write_img(save_path, im_proj, im_geotrans, re)
if __name__ == "__main__":
img_path = "0000000004_image.tif"
point_path = "./point/"
save_path = "test_radom.tif"
random_test(img_path, point_path, save_path)