文章目录
- 1. 数据准备
- 2. 相关代码
- 3. 结果展示
1. 数据准备
- 遥感影像
-
n个shp文件(n为类别数,其中包括背景类)
截图如下
基于遥感影像的随机森林多分类应用示例(python) - 点矢量截图
基于遥感影像的随机森林多分类应用示例(python)
2. 相关代码
# -*- coding: utf-8 -*-
import os, sys, time
import gdal
from osgeo import ogr
from osgeo import gdal
from osgeo import gdal_array as ga
from gdalconst import *
from skimage import morphology, filters
import numpy as np
from numba import jit, vectorize, int64
import warnings
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.ensemble import ExtraTreesClassifier
def read_img(filename):
dataset = gdal.Open(filename)
im_width = dataset.RasterXSize
im_height = dataset.RasterYSize
im_geotrans = dataset.GetGeoTransform()
im_proj = dataset.GetProjection()
im_data = dataset.ReadAsArray(0, 0, im_width, im_height)
del dataset
return im_proj, im_geotrans, im_width, im_height, im_data
def write_img(filename, im_proj, im_geotrans, im_data):
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1, im_data.shape
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans)
dataset.SetProjection(im_proj)
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data)
else:
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
def getPixels(shp, img):
driver = ogr.GetDriverByName('ESRI Shapefile')
ds = driver.Open(shp, 0)
if ds is None:
print('Could not open ' + shp)
sys.exit(1)
layer = ds.GetLayer()
xValues = []
yValues = []
feature = layer.GetNextFeature()
while feature:
geometry = feature.GetGeometryRef()
x = geometry.GetX()
y = geometry.GetY()
xValues.append(x)
yValues.append(y)
feature = layer.GetNextFeature()
gdal.AllRegister()
ds = gdal.Open(img, GA_ReadOnly)
if ds is None:
print('Could not open image')
sys.exit(1)
rows = ds.RasterYSize
cols = ds.RasterXSize
bands = ds.RasterCount
transform = ds.GetGeoTransform()
xOrigin = transform[0]
yOrigin = transform[3]
pixelWidth = transform[1]
pixelHeight = transform[5]
values = []
for i in range(len(xValues)):
x = xValues[i]
y = yValues[i]
xOffset = int((x - xOrigin) / pixelWidth)
yOffset = int((y - yOrigin) / pixelHeight)
s = str(int(x)) + ' ' + str(int(y)) + ' ' + str(xOffset) + ' ' + str(yOffset) + ' '
dt = ds.ReadAsArray(xOffset, yOffset, 1, 1)
values.append(dt.flatten())
return values
def array_change(inlist, outlist):
for i in range(len(inlist[0])):
outlist.append([j[i] for j in inlist])
return outlist
def array_change2(inlist, outlist):
for ele in inlist:
for ele2 in ele:
outlist.append(ele2)
return outlist
def random_test(img_path, point_path, save_path):
class_list = []
label_list = []
count = 0
for shp in os.listdir(point_path):
if shp[-4:] == '.shp':
shp_full_path = os.path.join(point_path, shp)
class_type = getPixels(shp_full_path, img_path)
class_list += class_type
label_list += [count] * len(class_type)
count += 1
arr = np.array(class_list)
label = np.array(label_list)
im_proj, im_geotrans, im_width, im_height, im_data = read_img(img_path)
im_data = im_data.transpose((2, 1, 0))
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
clf.fit(arr, label)
img_arr_temp = im_data
img_reshape = img_arr_temp.reshape([img_arr_temp.shape[0] * img_arr_temp.shape[1], img_arr_temp.shape[2]])
seg = clf.predict(img_reshape)
re = seg.reshape((img_arr_temp.shape[0], img_arr_temp.shape[1]))
re = re.transpose((1, 0))
write_img(save_path, im_proj, im_geotrans, re)
if __name__ == "__main__":
img_path = "0000000004_image.tif"
point_path = "./point/"
save_path = "test_radom.tif"
random_test(img_path, point_path, save_path)