天天看點

【ML&DL學習】20 rnn embedding text generation

模型建立

embedding_dim = 16
batch_size = 512

single_rnn_model = keras.models.Sequential([
    # 1. define matrix: [vocab_size, embedding_dim]
    # 2. [1,2,3,4..], max_length * embedding_dim
    # 3. batch_size * max_length * embedding_dim
    keras.layers.Embedding(vocab_size, embedding_dim,
                           input_length = max_length),
	# rnn return_sequences 傳回的最後一步的輸出還是所有輸出 false最後一步輸出                           
    keras.layers.SimpleRNN(units = 64, return_sequences = False),
    keras.layers.Dense(64, activation = 'relu'),
    keras.layers.Dense(1, activation='sigmoid'),
])

single_rnn_model.summary()
single_rnn_model.compile(optimizer = 'adam',
                         loss = 'binary_crossentropy',
                         metrics = ['accuracy'])

           
【ML&DL學習】20 rnn embedding text generation

訓練

history_single_rnn = single_rnn_model.fit(
    train_data, train_labels,
    epochs = 30,
    batch_size = batch_size,
    validation_split = 0.2)
           
【ML&DL學習】20 rnn embedding text generation

學習曲線

def plot_learning_curves(history, label, epochs, min_value, max_value):
    data = {}
    data[label] = history.history[label]
    data['val_'+label] = history.history['val_'+label]
    pd.DataFrame(data).plot(figsize=(8, 5))
    plt.grid(True)
    plt.axis([0, epochs, min_value, max_value])
    plt.show()
    
plot_learning_curves(history_single_rnn, 'acc', 30, 0, 1)
plot_learning_curves(history_single_rnn, 'loss', 30, 0, 1)
           
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation

測試

【ML&DL學習】20 rnn embedding text generation

準确率0.5036,上面采用的是單向rnn,如果采用雙向rnn是什麼效果呢?

雙向rnn模型

embedding_dim = 16
batch_size = 512
model = keras.models.Sequential([
    # 1. define matrix: [vocab_size, embedding_dim]
    # 2. [1,2,3,4..], max_length * embedding_dim
    # 3. batch_size * max_length * embedding_dim
    keras.layers.Embedding(vocab_size, embedding_dim,
                           input_length = max_length),
	# 雙向rnn封裝                           
    keras.layers.Bidirectional(
        keras.layers.SimpleRNN(
        	# 設定為true 因為要輸入下一層,不是單個序列
            units = 64, return_sequences = True)),
	# 多層雙向rnn            
    keras.layers.Bidirectional(
        keras.layers.SimpleRNN(
            units = 64, return_sequences = False)),
    keras.layers.Dense(64, activation = 'relu'),
    keras.layers.Dense(1, activation='sigmoid'),
])
model.summary()
model.compile(optimizer = 'adam',
              loss = 'binary_crossentropy',
              metrics = ['accuracy'])
           
【ML&DL學習】20 rnn embedding text generation

雙向rnn訓練

history = model.fit(
    train_data, train_labels,
    epochs = 30,
    batch_size = batch_size,
    validation_split = 0.2)
           
【ML&DL學習】20 rnn embedding text generation

準确率要好一點

雙向rnn學習曲線

plot_learning_curves(history, 'acc', 30, 0, 1)
plot_learning_curves(history, 'loss', 30, 0, 3.8)
           
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation

雙層雙向rnn太複雜,有過拟合的問題,是以可以改成單層試試。

單層雙向rnn模型

embedding_dim = 16
batch_size = 512
bi_rnn_model = keras.models.Sequential([
    # 1. define matrix: [vocab_size, embedding_dim]
    # 2. [1,2,3,4..], max_length * embedding_dim
    # 3. batch_size * max_length * embedding_dim
    keras.layers.Embedding(vocab_size, embedding_dim,
                           input_length = max_length),
    keras.layers.Bidirectional(
        keras.layers.SimpleRNN(
        	# 改成32
            units = 32, return_sequences = False)),
    keras.layers.Dense(32, activation = 'relu'),
    keras.layers.Dense(1, activation='sigmoid'),
])
bi_rnn_model.summary()
bi_rnn_model.compile(optimizer = 'adam',
                     loss = 'binary_crossentropy',
                     metrics = ['accuracy'])
           
【ML&DL學習】20 rnn embedding text generation

訓練

history = bi_rnn_model.fit(
    train_data, train_labels,
    epochs = 30,
    batch_size = batch_size,
    validation_split = 0.2)
           
【ML&DL學習】20 rnn embedding text generation

準确率好很多。

學習曲線

plot_learning_curves(history, 'acc', 30, 0, 1)
plot_learning_curves(history, 'loss', 30, 0, 1.5)
           
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation

測試

【ML&DL學習】20 rnn embedding text generation

準确率比普通神經網絡要低,說明rnn比普通nn要弱嗎?

從學習曲線圖看出,在第五次疊代後,test loss開始上升,說明rnn過拟合非常明顯,說明這個模型非常強大,太強大了是以過拟合,剛剛使用的減少過拟合方法是降低模型尺寸,還有一些正則化項,dropout,也可以防止過拟合。之後會介紹一種更強大的網絡來防止過拟合——LSTM。

text generation

導入莎士比亞資料集

【ML&DL學習】20 rnn embedding text generation

資料處理

【ML&DL學習】20 rnn embedding text generation

詞表65,一共有如上字元。

【ML&DL學習】20 rnn embedding text generation

字元對應一個id,形成id到字元的一個映射。

【ML&DL學習】20 rnn embedding text generation

把清單變成np.array

【ML&DL學習】20 rnn embedding text generation
def split_input_target(id_text):
    """
   每個輸出都是輸入的下一個字元
    abcde -> abcd, bcde
    """
    return id_text[0:-1], id_text[1:]
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)
seq_length = 100
# 輸入是5 輸出是4 長度+1
seq_dataset = char_dataset.batch(seq_length + 1,
							#最後一個batch不夠,直接丢掉
                                 drop_remainder = True)
for ch_id in char_dataset.take(2):
    print(ch_id, idx2char[ch_id.numpy()])
for seq_id in seq_dataset.take(2):
    print(seq_id)
    print(repr(''.join(idx2char[seq_id.numpy()])))
           
【ML&DL學習】20 rnn embedding text generation

調用上面函數獲得輸入和輸出。下面前兩個是一組輸入和輸出,對于第二維來說,裡面的第一個值等于第一維第一個的後面第二個值。

【ML&DL學習】20 rnn embedding text generation

建構data set

【ML&DL學習】20 rnn embedding text generation

定義模型

vocab_size = len(vocab)
embedding_dim = 256
rnn_units = 1024
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
    model = keras.models.Sequential([
    	# embedding 層
        keras.layers.Embedding(vocab_size, embedding_dim,
                               batch_input_shape = [batch_size, None]),
        keras.layers.SimpleRNN(units = rnn_units,
                               stateful = True,
                               recurrent_initializer = 'glorot_uniform',
                               return_sequences = True),
        keras.layers.Dense(vocab_size),
    ])
    return model
model = build_model(
    vocab_size = vocab_size,
    embedding_dim = embedding_dim,
    rnn_units = rnn_units,
    batch_size = batch_size)
model.summary()
           
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation

batch size * 長度 * 類别預測(預測一個機率分布)

随機采樣

# random sampling.
# greedy, random.
sample_indices = tf.random.categorical(
    logits = example_batch_predictions[0], num_samples = 1)
print(sample_indices)
# (100, 65) -> (100, 1)
sample_indices = tf.squeeze(sample_indices, axis = -1)
print(sample_indices)
           
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation
【ML&DL學習】20 rnn embedding text generation
output_dir = "./text_generation_checkpoints"
if not os.path.exists(output_dir):
    os.mkdir(output_dir)
checkpoint_prefix = os.path.join(output_dir, 'ckpt_{epoch}')
checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath = checkpoint_prefix,
    save_weights_only = True)
epochs = 100
history = model.fit(seq_dataset, epochs = epochs,
                    callbacks = [checkpoint_callback])
           
【ML&DL學習】20 rnn embedding text generation
model2 = build_model(vocab_size,
                     embedding_dim,
                     rnn_units,
                     batch_size = 1)
model2.load_weights(tf.train.latest_checkpoint(output_dir))
model2.build(tf.TensorShape([1, None]))
# start ch sequence A,
# A -> model -> b
# A.append(b) -> B
# B(Ab) -> model -> c
# B.append(c) -> C
# C(Abc) -> model -> ...
model2.summary()
           
【ML&DL學習】20 rnn embedding text generation
def generate_text(model, start_string, num_generate = 1000):
    input_eval = [char2idx[ch] for ch in start_string]
    input_eval = tf.expand_dims(input_eval, 0)    
    text_generated = []
    model.reset_states()    
    for _ in range(num_generate):
        # 1. model inference -> predictions
        # 2. sample -> ch -> text_generated.
        # 3. update input_eval        
        # predictions : [batch_size, input_eval_len, vocab_size]
        predictions = model(input_eval)
        # predictions : [input_eval_len, vocab_size]
        predictions = tf.squeeze(predictions, 0)
        # predicted_ids: [input_eval_len, 1]
        # a b c -> b c d
        predicted_id = tf.random.categorical(
            predictions, num_samples = 1)[-1, 0].numpy()
        text_generated.append(idx2char[predicted_id])
        # s, x -> rnn -> s', y
        input_eval = tf.expand_dims([predicted_id], 0)
    return start_string + ''.join(text_generated)
new_text = generate_text(model2, "All: ")
print(new_text)
           

生成文本

【ML&DL學習】20 rnn embedding text generation

繼續閱讀