天天看點

蔡軍生先生第二人生的源碼分析(12)天空顯示的實作

在虛拟世界裡,自然現象的實作是最需要實作的,比如天空的實作,以便反映是白天還是晚上,這樣才逼真反映現實世界。在第二人生裡實作的天空,還是比較好的,如下圖所示:

蔡軍生先生第二人生的源碼分析(12)天空顯示的實作

蔡軍生 2008/01/10 QQ:9073204 深圳 從上面的圖檔裡,可以看到太陽在遠處,并具有霧化的效果,這是早上太陽升起的效果。看到遠處是淺藍色的天空,與海邊連接配接成一體。在室外場境的模拟中,最重要的就是天空體的實作。目前實作天空體有兩種不同的實作方式:天體盒和天空穹。而第二人生裡是采用天空盒的實作方式,這種方式是渲染的速度比較快,但紋理需要特别處理,才讓人們看到的所有地方一樣遠的感覺。跟實作地面是一樣的,都是使用網格和紋理來實作。下面就來通過代碼仔細地分析怎麼建立天空盒的網格,以及紋理的坐标設定。   #001  #002 BOOL LLVOSky::updateGeometry(LLDrawable *drawable) #003 { #004       if (mFace[FACE_REFLECTION] == NULL) #005       { #006              LLDrawPoolWater *poolp = (LLDrawPoolWater*) gPipeline.getPool(LLDrawPool::POOL_WATER); #007              mFace[FACE_REFLECTION] = drawable->addFace(poolp, NULL); #008       } 建立反射表面。   #009  #010       mCameraPosAgent = drawable->getPositionAgent(); #011       mEarthCenter.mV[0] = mCameraPosAgent.mV[0]; #012       mEarthCenter.mV[1] = mCameraPosAgent.mV[1]; #013  #014       LLVector3 v_agent[8]; #015       for (S32 i = 0; i < 8; ++i) #016       { #017               F32 x_sgn = (i&1) ? 1.f : -1.f; #018               F32 y_sgn = (i&2) ? 1.f : -1.f; #019               F32 z_sgn = (i&4) ? 1.f : -1.f; #020              v_agent[i] = HORIZON_DIST*0.25f * LLVector3(x_sgn, y_sgn, z_sgn); #021       } #022  #023       LLStrider<LLVector3> verticesp; #024       LLStrider<LLVector3> normalsp; #025       LLStrider<LLVector2> texCoordsp; #026       LLStrider<U32> indicesp; #027       S32 index_offset; #028       LLFace *face;      #029    下面開始建立天空盒的6個平面。 #030       for (S32 side = 0; side < 6; ++side) #031       { #032              face = mFace[FACE_SIDE0 + side]; #033  #034              if (face->mVertexBuffer.isNull()) #035              { #036                     face->setSize(4, 6); 設定每個表面有4個頂點構成,共有6個索引頂點。   #037                     face->setGeomIndex(0); #038                     face->setIndicesIndex(0); #039                     face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); #040                     face->mVertexBuffer->allocateBuffer(4, 6, TRUE); 上面配置設定頂點緩沖區和索引緩沖區。   #041                     #042                     index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp); #043                     #044                     S32 vtx = 0; #045                     S32 curr_bit = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X #046                     S32 side_dir = side & 1; // even - 0, odd - 1 #047                     S32 i_bit = (curr_bit + 2) % 3; #048                     S32 j_bit = (i_bit + 2) % 3; #049  #050                     LLVector3 axis; #051                     axis.mV[curr_bit] = 1; #052                     face->mCenterAgent = (F32)((side_dir << 1) - 1) * axis * HORIZON_DIST; #053  #054                     vtx = side_dir << curr_bit; #055                     *(verticesp++) = v_agent[vtx]; #056                     *(verticesp++) = v_agent[vtx | 1 << j_bit]; #057                     *(verticesp++) = v_agent[vtx | 1 << i_bit]; #058                     *(verticesp++) = v_agent[vtx | 1 << i_bit | 1 << j_bit]; 上面計算4個頂點坐标。   #059  #060                     *(texCoordsp++) = TEX00; #061                     *(texCoordsp++) = TEX01; #062                     *(texCoordsp++) = TEX10; #063                     *(texCoordsp++) = TEX11; #064  設定4個頂點的紋理坐标。   #065                     // Triangles for each side #066                     *indicesp++ = index_offset + 0; #067                     *indicesp++ = index_offset + 1; #068                     *indicesp++ = index_offset + 3; #069  #070                     *indicesp++ = index_offset + 0; #071                     *indicesp++ = index_offset + 3; #072                     *indicesp++ = index_offset + 2; 上面設定每個表面由兩個三角形構成索引。   #073              } #074       } #075  #076       const LLVector3 &look_at = gCamera->getAtAxis(); #077       LLVector3 right = look_at % LLVector3::z_axis; #078       LLVector3 up = right % look_at; #079       right.normVec(); #080       up.normVec(); #081  #082       const static F32 elevation_factor = 0.0f/sResolution; #083       const F32 cos_max_angle = cosHorizon(elevation_factor); #084       mSun.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_SUN, TRUE, mSun, cos_max_angle, up, right)); #085       mMoon.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_MOON, FALSE, mMoon, cos_max_angle, up, right)); #086  #087       const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.01f; #088              // gWorldPointer->getWaterHeight() + 0.01f; #089       const F32 camera_height = mCameraPosAgent.mV[2]; #090       const F32 height_above_water = camera_height - water_height; #091  #092       BOOL sun_flag = FALSE; #093  #094       if (mSun.isVisible()) #095       { #096              if (mMoon.isVisible()) #097              { #098                     sun_flag = look_at * mSun.getDirection() > 0; #099              } #100              else #101              { #102                     sun_flag = TRUE; #103              } #104       } #105       #106       if (height_above_water > 0) #107       { #108 #if 1 //1.9.1 #109              BOOL render_ref = gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() == 0; #110 #else #111              BOOL render_ref = !(gPipeline.getVertexShaderLevel(LLPipeline::SHADER_ENVIRONMENT) >= LLDrawPoolWater::SHADER_LEVEL_RIPPLE); #112 #endif #113              if (sun_flag) #114              { #115                     setDrawRefl(0); #116                     if (render_ref) #117                     { #118                            updateReflectionGeometry(drawable, height_above_water, mSun); #119                     } #120              } #121              else #122              { #123                     setDrawRefl(1); #124                     if (render_ref) #125                     { #126                            updateReflectionGeometry(drawable, height_above_water, mMoon); #127                     } #128              } #129       } #130       else #131       { #132              setDrawRefl(-1); #133       } #134  #135  #136       LLPipeline::sCompiles++; #137       return TRUE; #138 } #139  上面計算太陽和月亮的出現位置以及光照效果。   通過上面的分析,了解天空體的網格建立,紋理坐标的設定,以及太陽、月亮的效果計算。

繼續閱讀