import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#每個批次的大小
batch_size=100
#計算一共有多少個批次
n_batch=mnist.train.num_examples//batch_size
#初始化權值
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1) # 生成一個截斷的正太分布
return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷積層
def conv2d(x,W):
# x input tensor of shape [batch,in_height,in_width,in_channels]
# W filter/kernel tensor of shape [filter_height,filter_width,in_channels,out_channels]
# stride[0]=stride[3]=1 stride[1]、stride[2]分别代表x方向、y方向的步長
# padding: 'SAME'、'VALID'
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化層
def max_pool_2x2(x):
# ksize [1,x,y,1]
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#定義兩個placeholder
x=tf.placeholder(tf.float32,[None,784]) # 28*28
y=tf.placeholder(tf.float32,[None,10])
# 改變x的格式轉為4D的向量 [batch,in_height,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])
#初始化第一個卷積層的權值和偏置
W_conv1=weight_variable([5,5,1,32]) # 5*5的采樣視窗,32個卷積核從一個平面抽取特征
b_conv1=bias_variable([32])
#把x_image和權值向量進行卷積,再加上偏置值,然後應用于relu激活函數
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)
#初始化第二個卷積層的權值和偏置
W_conv2=weight_variable([5,5,32,64])
b_conv2=bias_variable([64])
#把h_pool1和權值向量進行卷積,再加上偏置值,然後應用于relu激活函數
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)
# 28*28的圖檔第一次卷積後還是28*28,第一次池化後變為14*14
# 第二次卷積後為14*14,第二次池化後變為了7*7
# 經過上面操作後得到64張7*7的平面
# 把池化層的輸出扁平化為1維
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
#初始化第一個全連接配接層的權值
W_fc1=weight_variable([7*7*64,1024])
b_fc1=bias_variable([1024])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
# keep_prob用來表示神經元的輸出機率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#初始化第二個全連接配接層
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
#計算輸出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#交叉熵代價函數
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer進行優化
train_step=tf.train.AdadeltaOptimizer(1e-4).minimize(cross_entropy)
#結果放在一個布爾型清單中
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求準确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})cc
print("Iter "+str(epoch)+", Testing Accuracy= "+str(acc))