天天看點

Vision Transformer——ViT代碼解讀

官方提供的代碼:https://github.com/google-research/vision_transformer

大佬複現的版本:https://github.com/lucidrains/vit-pytorch

對不起,我好菜,官方給的代碼我确實看不懂啊,是以看了第二個版本的代碼。第二個版本的代碼超級受歡迎且易使用,我看的時候,Git repo已經被star 5.7k次。大家直接

pip install vit-pytorch

就好。

是以作為初次接觸vit的同學們來說,推薦看第二個版本,結構清晰明了。

1. 大佬複現版本給的使用案例

import torch
from vit_pytorch import ViT

v = ViT(
    image_size = 256,    # 圖像大小
    patch_size = 32,     # patch大小(分塊的大小)
    num_classes = 1000,  # imagenet資料集1000分類
    dim = 1024,          # position embedding的次元
    depth = 6,           # encoder和decoder中block層數是6
    heads = 16,          # multi-head中head的數量為16
    mlp_dim = 2048,
    dropout = 0.1,       # 
    emb_dropout = 0.1
)

img = torch.randn(1, 3, 256, 256)

preds = v(img) # (1, 1000)
           

大家完全可以把這段代碼copy-paste到自己的pycharm裡,然後使用調試功能,一步步看ViT的每一步操作。

2. Transformer結構

進行6次for循環,有6層encoder和decoder結構。for循環内部依次使用multi-head attention和Feed Forward,對應Transformer的Encoder結構中多頭自注意力子產品和MLP子產品。在自注意力後及feed forward後,有殘差連接配接。

class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
            ]))
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x
           

PreNorm類代碼如下,在使用multi-head attention和Feed Forward之前,首先對輸入通過LayerNorm進行處理。

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)
           

可以參考論文中的圖:

Vision Transformer——ViT代碼解讀

3. Attention

class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim = -1)    # 首先生成q,k,v
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

        attn = self.attend(dots)

        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)
           

torch.chunk(tensor, chunk_num, dim)函數的功能:與torch.cat()剛好相反,它是将tensor按dim(行或列)分割成chunk_num個tensor塊,傳回的是一個元組。

attention操作的整體流程:

  1. 首先對輸入生成query, key和value,這裡的“輸入”有可能是整個網絡的輸入,也可能是某個hidden layer的output。在這裡,生成的qkv是個長度為3的元組,每個元組的大小為(1, 65, 1024)
  2. 對qkv進行處理,重新指定次元,得到的q, k, v次元均為(1, 16, 65, 64)
  3. q和k做點乘,得到的dots次元為(1, 16, 65, 65)
  4. 對dots的最後一維做softmax,得到各個patch對其他patch的注意力得分
  5. 将attention和value做點乘
  6. 對各個次元重新排列,得到與輸入相同次元的輸出 (1, 65, 1024)

4. FeedForward

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),   # dim=1024, hidden_dim=2048
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    def forward(self, x):
        return self.net(x)
           

FeedForward子產品共有2個全連接配接層,整個結構是:

  1. 首先過一個全連接配接層
  2. 經過GELU()激活函數進行處理
  3. nn.Dropout(),以一定機率丢失掉一些神經元,防止過拟合
  4. 再過一個全連接配接層
  5. nn.Dropout()

    注意:GELU(x) = x * Φ(x), 其中,Φ(x)是高斯分布的累積分布函數 。

5. ViT操作流程

ViT的各個結構都寫在了__init__()裡,不再細講,通過forward()來看ViT的整個前向傳播過程(操作流程)。

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)
        assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
            nn.Linear(patch_dim, dim),
        )
        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))  # (1,65,1024)
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)
        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
        self.pool = pool
        self.to_latent = nn.Identity()
        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, num_classes)
        )

    def forward(self, img):   # img: (1, 3, 256, 256)
        x = self.to_patch_embedding(img)     # (1, 64, 1024)
        b, n, _ = x.shape
        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)    # (1, 1, 1024)
        x = torch.cat((cls_tokens, x), dim=1)  # (1, 65, 1024)
        x += self.pos_embedding[:, :(n + 1)]   # (1, 65, 1024)
        x = self.dropout(x)                    # (1, 65, 1024)
        x = self.transformer(x)                # (1, 65, 1024)
        x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]      # (1, 1024)
        x = self.to_latent(x)
        return self.mlp_head(x)
           

整體流程:

  1. 首先對輸入進來的img(256*256大小),劃分為32*32大小的patch,共有8*8個。并将patch轉換成embedding。(對應第26行代碼)
  2. 生成cls_tokens (對應第28行代碼)
  3. 将cls_tokens沿dim=1維與x進行拼接 (對應第29行代碼)
  4. 生成随機的position embedding,每個embedding都是1024維 (對應代碼14行和30行)
  5. 對輸入經過Transformer進行編碼(對應代碼第32行)
  6. 如果是分類任務的話,截取第一個可學習的class embedding
  7. 最後過一個MLP Head用于分類。

繼續閱讀