天天看點

R-FCN訓練自己得資料集(代補充)

前言

RFCN和faster rcnn算法模型原理非常類似,也有RPN,也是分兩階段來進行目标檢測。主要不同點就是RFCN添加了Position Sensitive ROI Pooling層,這樣使得ROI Pooling前已經帶有位置資訊,後面隻需要做分類即可。基于這一改變,使得後面全連接配接層可以省略掉,模型size減少很多,計算量大為減少,進而效率提高了,而準确度還能和faster rcnn相當。

參考:https://blog.csdn.net/sinat_30071459/article/details/53202977

https://blog.csdn.net/avideointerfaces/article/details/100726840

代碼下載下傳和編譯

1)下載下傳RFCN代碼 

git clone https://github.com/Orpine/py-R-FCN.git

2) 下載下傳對應得caffe代碼

cd py-R-FCN

git clone https://github.com/Microsoft/caffe.git

R-FCN訓練自己得資料集(代補充)

3)編譯Cython

cd xx/py-R-FCN/lib

make

R-FCN訓練自己得資料集(代補充)

這個時候可能會遇到cuda located error,需要修改setup.py,具體參考部落格:https://blog.csdn.net/ltshan139/article/details/99868686

4)編譯caffe

 cd xx/py-R-FCN/caffe

cp Makefile.config.example Makefile.config

sudo make clean

sudo make -j8

sudo make pycaffe -j8

在編譯前需要對Makefile.config進行修改。我的Makefile.config修改後檔案 如下

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_50,code=sm_50 \
             -gencode arch=compute_52,code=sm_52 \
             -gencode arch=compute_61,code=sm_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
		/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
		# $(ANACONDA_HOME)/include/python2.7 \
		# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @
           
R-FCN訓練自己得資料集(代補充)
R-FCN訓練自己得資料集(代補充)

5)經過上面的工作,我們可以測試一下是否可以正常運作。可以運作demo來驗證下。

我們需要下載下傳作者訓練好的模型,位址:連結:http://pan.baidu.com/s/1kVGy8DL 密碼:pwwg

然後将模型放在$RFCN_ROOT/data。看起來是這樣的:

在caffe-R-FCN下,運作:

直接運作下面這個腳本就運作的是ResNet101模型:(也可以不用sudo)

sudo ./tools/demo_rfcn.py 

如果想運作ResNet50,則這麼輸入:

sudo ./tools/demo_rfcn.py --net ResNet-50
R-FCN訓練自己得資料集(代補充)