天天看點

A-level數學知識點講解:任意角度的三角函數

Trigonometric functions for acute angles 銳角的三角函數

There are three basic trigonometric functions for acute angles: Sine (Sin), Cosine (Cos), and Tangent (Tan).

銳角有三個基本的三角函數。正弦(Sin),餘弦(Cos),和正切(Tan)。

A-level數學知識點講解:任意角度的三角函數

When using a right-angled triangle we get 當使用一個直角三角形時,我們得到:

A-level數學知識點講解:任意角度的三角函數
A-level數學知識點講解:任意角度的三角函數

These functions have a unique value for an acute angle that can be obtained from a scientific calculator.

這些函數對一個銳角有一個獨特的數值,可以從科學電腦中得到。

These formulae are only applicable for an acute angle in a right-angled triangle, and so the next stage is to extend to work with any angle in radians and degrees.

這些公式隻适用于直角三角形中的銳角,是以下一階段要擴充到以弧度和度數計算的任何角度。

Trigonometric functions for positive and negative angles 正和負的角度的三角函數

On a coordinate grid a general angle is measured from the positive x-axis and is represented by the angle through which a line OM rotates about the origin.

在坐标網格上,一般的角度是從正X軸開始測量的,并由線OM圍繞原點旋轉的角度來表示。

When we rotate anti-clockwise, the angle is positive while a clockwise rotation gives a negative angle.

當我們逆時針旋轉時,角度是正的,而順時針旋轉則是負的。

A-level數學知識點講解:任意角度的三角函數

Trigonometric functions for any angle in radians and degrees 以弧度和度為機關的任何角度的三角函數

The four quadrants of the Cartesian axes are as follows 直角坐标軸的四個象限如下:

A-level數學知識點講解:任意角度的三角函數

As the line OM rotates, the point M moves to the first quadrant where its coordinates are both positive, and into the second quadrant, where the x-coordinate becomes negative.

随着直線OM的旋轉,點M移動到第一象限,其坐标都是正的,并進入第二象限,其x坐标變成了負的。

In the third quadrant, both coordinates are negative and finally, in the fourth quadrant, the point has a positive x- and negative y-coordinate. (See below.)

在第三象限,兩個坐标都是負的,最後,在第四象限,該點的X坐标是正的,Y坐标是負的。(見下文)。

A-level數學知識點講解:任意角度的三角函數

You can see that the angle MON, called a, is always acute, and measured from the x-axis.

你可以看到角度MON,稱為a,總是銳角,并從X軸開始測量。

For example:

A-level數學知識點講解:任意角度的三角函數

The signs of the trigonometric functions depend on which quadrant the point M lies in and represent the signs of the x- and y-coordinates of M.

三角函數的符号取決于點M位于哪個象限,代表M的x坐标和y坐标的符号。

Learn the information in the following diagrams to help you understand the signs.

學習以下圖表中的資訊,以幫助你了解這些符号。

First quadrant 第一象限

All the functions are positive. 所有的函數都是正數。

A-level數學知識點講解:任意角度的三角函數

Second quadrant 第二象限

A-level數學知識點講解:任意角度的三角函數

By looking at the signs of the coordinates of M, we see that the trigonometric functions of are 通過觀察M的坐标的符号,我們看到M的三角函數是:

A-level數學知識點講解:任意角度的三角函數

Third quadrant 第三象限

A-level數學知識點講解:任意角度的三角函數

The signs of the coordinates of M show us that the trigonometric functions are M的坐标的符号告訴我們,三角函數是:

A-level數學知識點講解:任意角度的三角函數

Fourth quadrant 第四象限

A-level數學知識點講解:任意角度的三角函數

The signs of the coordinates of M show us that the trigonometric functions of are M的坐标的符号告訴我們,其三角函數是:

A-level數學知識點講解:任意角度的三角函數

This can be summarised as 這可以歸納為:

A-level數學知識點講解:任意角度的三角函數

These sign rules and the value of the acute angle a allow you to find the value of any trigonometric function of any angle.

這些符号規則和銳角a的值允許你找到任何角度的三角函數的值。

Example:

Find the values of sin 150, sin 210 and sin 690 if sin 30 = 0.5. 如果sin 30=0.5,求sin 150、sin 210和sin 690的值。

sin 150 = sin 30 = 0.5

sin 210 = - sin 30 = - 0.5

sin 690 = sin 330 = - sin 30 = -0.5

You also need to be aware of negative angles created from the rotation of M in a clockwise direction.

你還需要注意M沿順時針方向旋轉所産生的負角。

A-level數學知識點講解:任意角度的三角函數

i.e. each position of line OM gives us two different values of theta, one that is positive and one that is negative.

即OM線的每個位置都給我們兩個不同的theta值,一個是正值,一個是負值。

Example:

A-level數學知識點講解:任意角度的三角函數

Here a = 200 so both angles have the same trigonometric functions.

這裡a=200,是以兩個角的三角函數相同。

Therefore:

sin 160° = sin (-200° ) = + sin 20°

cos 160° = cos (-200° ) = - cos 20°

tan 160° = tan (-200° ) = - tan 20°

繼續閱讀