天天看點

利用 Scrapy 爬取知乎使用者資訊

  思路:通過擷取知乎某個大V的關注清單和被關注清單,檢視該大V和其關注使用者和被關注使用者的詳細資訊,然後通過層層遞歸調用,實作擷取關注使用者和被關注使用者的關注清單和被關注清單,最終實作擷取大量使用者資訊。

一、建立一個scrapy項目  

scrapy startproject zhihuuser      

  移動到建立目錄下:

cd zhihuuser      

  建立spider項目:

scrapy genspider zhihu zhihu.com      

二、這裡以爬取知乎大V輪子哥的使用者資訊來實作爬取知乎大量使用者資訊。

a) 定義 spdier.py 檔案(定義爬取網址,爬取規則等):

# -*- coding: utf-8 -*-
import json

from scrapy import Spider, Request

from zhihuuser.items import UserItem


class ZhihuSpider(Spider):
    name = 'zhihu'
    allowed_domains = ['zhihu.com']
    start_urls = ['http://zhihu.com/']
#自定義爬取網址
    start_user = 'excited-vczh'
    user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
    user_query = 'allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics'
    follows_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
    follows_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'

    followers_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
    followers_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'
#定義請求爬取使用者資訊、關注使用者和被關注使用者的函數
    def start_requests(self):
        yield Request(self.user_url.format(user=self.start_user, include=self.user_query), callback=self.parseUser)
        yield Request(self.follows_url.format(user=self.start_user, include=self.follows_query, offset=0, limit=20), callback=self.parseFollows)
        yield Request(self.followers_url.format(user=self.start_user, include=self.followers_query, offset=0, limit=20), callback=self.parseFollowers)

#請求爬取使用者詳細資訊
    def parseUser(self, response):
        result = json.loads(response.text)
        item = UserItem()

        for field in item.fields:
            if field in result.keys():
                item[field] = result.get(field)
        yield item
#定義回調函數,爬取關注使用者與被關注使用者的詳細資訊,實作層層疊代
        yield Request(self.follows_url.format(user=result.get('url_token'), include=self.follows_query, offset=0, limit=20), callback=self.parseFollows)
        yield Request(self.followers_url.format(user=result.get('url_token'), include=self.followers_query, offset=0, limit=20), callback=self.parseFollowers)

#爬取關注者清單
    def parseFollows(self, response):
        results = json.loads(response.text)

        if 'data' in results.keys():
            for result in results.get('data'):
                yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query), callback=self.parseUser)

        if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
            next_page = results.get('paging').get('next')
            yield Request(next_page, callback=self.parseFollows)

#爬取被關注者清單
    def parseFollowers(self, response):
        results = json.loads(response.text)

        if 'data' in results.keys():
            for result in results.get('data'):
                yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query), callback=self.parseUser)

        if 'paging' in results.keys() and results.get('paging').get('is_end')    == False:
            next_page = results.get('paging').get('next')
            yield Request(next_page, callback=self.parseFollowers)      

b) 定義 items.py 檔案(定義爬取資料的資訊,使其規整等):

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

from scrapy import Field, Item


class UserItem(Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    allow_message = Field()
    answer_count = Field()
    articles_count = Field()
    avatar_url = Field()
    avatar_url_template = Field()
    badge = Field()
    employments = Field()
    follower_count = Field()
    gender = Field()
    headline = Field()
    id = Field()
    name = Field()
    type = Field()
    url = Field()
    url_token = Field()
    user_type = Field()      

c) 定義 pipelines.py 檔案(存儲資料到MongoDB):

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo

#存儲到MongoDB
class MongoPipeline(object):

    collection_name = 'users'

    def __init__(self, mongo_uri, mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            mongo_uri=crawler.settings.get('MONGO_URI'),
            mongo_db=crawler.settings.get('MONGO_DATABASE')
        )

    def open_spider(self, spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        self.db[self.collection_name].update({'url_token': item['url_token']}, dict(item), True)        #執行去重操作
        return item      

d) 定義settings.py 檔案(開啟MongoDB、定義請求頭、不遵循 robotstxt 規則):

# -*- coding: utf-8 -*-
BOT_NAME = 'zhihuuser'

SPIDER_MODULES = ['zhihuuser.spiders']

# Obey robots.txt rules
ROBOTSTXT_OBEY = False  #是否遵守robotstxt規則,限制爬取内容。

# Override the default request headers(加載請求頭):
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
  'User-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36',
  'authorization': 'oauth c3cef7c66a1843f8b3a9e6a1e3160e20'
}

# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'zhihuuser.pipelines.MongoPipeline': 300,
}


MONGO_URI = 'localhost'
MONGO_DATABASE = 'zhihu'      

三、開啟爬取:

scrapy crawl zhihu      

部分爬取過程中的資訊

利用 Scrapy 爬取知乎使用者資訊

存儲到MongoDB的部分資訊:

利用 Scrapy 爬取知乎使用者資訊