天天看點

幹貨|一文搞懂極大似然估計

主要内容:通俗講解極大似然估計

極大似然估計,通俗了解來說,就是在假定整體模型分布已知,利用已知的樣本結果資訊,反推最具有可能(最大機率)導緻這些樣本結果出現的模型參數值!

換句話說,極大似然估計提供了一種給定觀察資料來評估模型參數的方法,即:“模型已定,參數未知”。

可能有小夥伴就要說了,還是有點抽象呀。我們這樣想,一當模型滿足某個分布,它的參數值我通過極大似然估計法求出來的話。比如正态分布中公式如下:

幹貨|一文搞懂極大似然估計

如果我通過極大似然估計,得到模型中參數u和sigma的值,那麼這個模型的均值和方差以及其它所有的資訊我們是不是就知道了呢。确實是這樣的。

極大似然估計中采樣需滿足一個重要的假設,就是所有的采樣都是獨立同分布的。

下面我通過倆個例子來幫助了解一下最大似然估計

1例子一

别人部落格的一個例子。

假如有一個罐子,裡面有黑白兩種顔色的球,數目多少不知,兩種顔色的比例也不知。我 們想知道罐中白球和黑球的比例,但我們不能把罐中的球全部拿出來數。

現在我們可以每次任意從已經搖勻的罐中拿一個球出來,記錄球的顔色,然後把拿出來的球 再放回罐中。這個過程可以重複,我們可以用記錄的球的顔色來估計罐中黑白球的比例。假如在前面的一百次重複記錄中,有七十次是白球,請問罐中白球所占的比例最有可能是多少?

很多人馬上就有答案了:70%。而其後的理論支撐是什麼呢?

我們假設罐中白球的比例是p,那麼黑球的比例就是1-p。因為每抽一個球出來,在記錄顔色之後,我們把抽出的球放回了罐中并搖勻,是以每次抽出來的球的顔色服從同一獨立分布。

這裡我們把一次抽出來球的顔色稱為一次抽樣。題目中在一百次抽樣中,七十次是白球的,三十次為黑球事件的機率是P(樣本結果|Model)。

如果第一次抽象的結果記為x1,第二次抽樣的結果記為x2....那麼樣本結果為(x1,x2.....,x100)。這樣,我們可以得到如下表達式:

P(樣本結果|Model)

  = P(x1,x2,…,x100|Model)

  = P(x1|Mel)P(x2|M)…P(x100|M)

  = p^70(1-p)^30.

好的,我們已經有了觀察樣本結果出現的機率表達式了。那麼我們要求的模型的參數,也就是求的式中的p。

那麼我們怎麼來求這個p呢?按照什麼标準來求這個p呢?

不同的p,直接導緻P(樣本結果|Model)的不同。

好的,我們的p實際上是有無數多種分布的。如下:

幹貨|一文搞懂極大似然估計

那麼在上面p的分布條件下求出 p^70(1-p)^30為 7.8 * 10^(-31)

p的分布也可以是如下:

幹貨|一文搞懂極大似然估計

那麼也可以求出p^70(1-p)^30為2.95* 10^(-27)

那麼問題來了,既然有無數種分布可以選擇,極大似然估計應該按照什麼原則去選取這個分布呢?

答:采取的方法是讓這個樣本結果出現的可能性最大,也就是使得p^70(1-p)^30值最大,那麼我們就可以看成是p的方程,求導即可!

那麼既然事情已經發生了,為什麼不讓這個出現的結果的可能性最大呢?使得發生的樣本出現的可能性最大。這就是最大似然估計的核心。

我們想辦法讓觀察樣本出現的機率最大,轉換為數學問題就是使得:

p^70(1-p)^30最大,這太簡單了,未知數隻有一個p,我們令其導數為0,即可求出p為70%,與我們一開始認為的70%是一緻的。其中蘊含着我們的數學思想在裡面。

2  例子二

假設我們要統計全國人民的年均收入,首先假設這個收入服從服從正态分布,但是該分布的均值與方差未知。我們沒有人力與物力去統計全國每個人的收入。我們國家有10幾億人口呢?那麼豈不是沒有辦法了?

不不不,有了極大似然估計之後,我們可以采用嘛!我們比如選取一個城市,或者一個鄉鎮的人口收入,作為我們的觀察樣本結果。然後通過最大似然估計來擷取上述假設中的正态分布的參數。

有了參數的結果後,我們就可以知道該正态分布的期望和方差了。也就是我們通過了一個小樣本的采樣,反過來知道了全國人民年收入的一系列重要的數學名額量!

那麼我們就知道了極大似然估計的核心關鍵就是對于一些情況,樣本太多,無法得出分布的參數值,可以采樣小樣本後,利用極大似然估計擷取假設中分布的參數值。就相當于得到了模型的一系列重要數學名額了。

希望對您了解有幫助~

參考:

從最大似然到EM算法淺解 - zouxy09的專欄 - 部落格頻道 - CSDN.NET

最大似然估計的學習 - growoldwith_you的部落格 - 部落格頻道 - CSDN.NET

推薦閱讀:

精選幹貨|近半年幹貨目錄彙總

幹貨|掌握機器學習數學基礎之優化[1](重點知識)

【直覺詳解】什麼是PCA、SVD

          歡迎關注公衆号學習交流~         

幹貨|一文搞懂極大似然估計

歡迎加入交流群交流學習~